PS-28 Cruiser

MANUEL DE VOL

Immatriculation:
Numéro de série :

F-HVPS

C0478

Ce document est une traduction aussi fidèle que possible du document original. Czech Sport Aircraft n'accepte aucune responsabilité sur le contenu de la traduction. Le document original "Pilot's Operating Handbook" a été approuvé par l'EASA: Restricted Type Certificate No.: EASA.A. 546

Page laissée intentionnellement blanche

Le PS-28 Cruiser est conçu et construit par:

Czech sport aircraft a.s.
Na Záhonech 1177/212, 68604 Kunovice Czech Republic

Website: www.czechsportaircraft.com
E-mail: office@czechsportaircraft.com
Téléphone: +420576514034 (Sales Dept.)
Fax: +420 576519394

Page laissée intentionnellement blanche

HISTORIQUE DES MISES A JOUR

Page laissée intentionnellement blanche

LISTE DES PAGES EN COURS

Se Section	Page	Date	Section,	Page	- Date
	1	2012-07-03	2		
	ii	2011-09-01	EASA approved	$2-9$	2011-09-01
\square	iil	2011-09-01	EASA approved	2-10	2011-09-01
-	iv	2011-09-01	EASA approved	2-11	2011-09-01
	v	2012-07-03	EASA approved	2-12	2012-07-03
	vi	2011-09-01			人 $\mathrm{y}^{\text {max }}$
	vil	2012-07-03	3		5 ${ }^{2}$
	viii	2012-07-03	EASA approved	3-1	2011-09-01
	ix	2011-09-01	EASA approved	-32.	2011-09-01
	x	2011-09-01	EASA approved ${ }_{6}$	+3-3	2011-09-01
	x	2011-09-01	EASA approyed	\%-4	2011-09-01
	xii	2011-09-01	EASA approved	3-5	2011-09-01
	xiii	2011-09-01	EASA approved	3-6	2011-09-01
	xiv	2011-09-01	EASA approved	$3-7$	2011-09-01
\square	xV	2011-09-01	EASA approved	3-8	2011-09-01
1	xvi	2011-09-01	EASA approved	3-9	2011-09-01
		6.	EASA approved	3-10	2011-09-01
1		4×1	EASA approved	3-11	2011-09-01
	1-1	201109-01\%	EASA approved	3-12	2011-09-01
	1-2	2041-09\%01	EASA approved	3-13	2011-09-01
	$1-3$	2091-09-01	EASA approved	3-14	2012-07-03
	1-4	2011-09-01			
	- $1-5$	2011-09-01			
\pm	+ $1-6$	2011-09-01			
${ }^{2} 5$			4		
2 产				4-1	2011-09-01
EASAapproved	2-1	2011-09-01		42	2011-09-01
EASA approved	2-2	2011-09-01		4.3	2012-07-03
\% EASA approved	2-3	2011-09-01		4-4	2011-09-01
EASA approved	2-4	2011-09-01		$4-5$	2012-07-03
EASA approved	2-5	2011-09-01		4-6	2012-07-03
EASA approved	2-6	2011-09-01		4.7	2011-09-01
EASA approved	2-7	2011-09-01		$4-8$	2011-09-01
EASA approved	2-8	2012-07-03		49	2011-09-01

LISTE DES PAGES EN COURS (Suite)

Section	Page	Date	Section	Page	Date
4			6		
	4-10	2011-09-01	EASA approved	6-12	2011-09-01
	4-11	2012-07-03	EASA approved	6-13	2011-09-01
	4-12	2012-07-03	EASA approved	6-14	2011-09-01
			EASA approved	6-15	$2011-09-01$ b
5			EASA approved	6-16	2011-09-01
EASA approved	5-1	2011-09-01			5
EASA approved	5-2	2011-09-01	7		2^{6}
EASA approved	5-3	2011-09-01		7-1.	2011-09-01
EASA approved	5-4	2011-09-01	$\%^{3 / 2}$	7-2	2011-09-01
EASA approved	5-5	2011-09-01	Q	-7-3	2011-09-01
EASA approved	5-6	2011-09-01	A	7-4	2011-09-01
EASA approved	5-7	2011-09-01	(a) ${ }^{\text {a }}$	7-5	2011-09-01
EASA approved	5-8	2011-09-01	$4{ }^{4}+$	7-6	2011-09-01
EASA approved	5-9	2011-09-01		7-7	2011-09-01
EASA approved	5-10	2011-09-01	y^{2}	7.8	2011-09-01
EASA approved	5-11	2011-09-01/4]	\%		
EASA approved	5-12	2011-09-01/	8		
		/4 ${ }^{2}$		8-1	2011-09-01
6		An ${ }^{\text {a }}$		8-2	2011-09-01
EASA approved	6-1	2011-09-01		8-3	2011-09-01
EASA approved	6-2	2011-09-01	EASA approved	8-4	2011-09-01
EASA approved	6-3	2011-09-01	EASA approved	8-5	2011-09-01
EASA approved	6-4	2011-09-01		8-6	2011-09-01
EASA approved	6-5	2011-09-01		8-7	2011-09-01
EASA approved ${ }^{\text {s }}$	6-6	2011-09-01		8-8	2011-09-01
EASA approved	6-7	2011-09-01			
EASA approved	6-8	2011-09-01	9		
EASA approved	6-9	2011-09-01		9-1	2011-09-01
EASA approved	6-10	2011-09-01		9-2	2011-09-01
EASA approved	6-11	2011-09-01			

LISTE DES ABREVIATIONS	
ADI	Attitude direction indicator (Horizon)
AGL	Above Ground Level (Au-dessus du sol)
ALT	Altitude or AltimeterAir Traffic Control (Contrôle du trafic aérien)
ATC	
AS!	Airspeed Indicator (Anémomètre)
bar	Pressure unit (Unité de pression) (1 bar $=14.5037 \mathrm{psi}$)
BEACON	Anti-collision beacon
${ }^{\circ} \mathrm{C}$	Temperature in degree of Celsius $\quad\left({ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8\right)$
CAS	Calibrated Airspeed
CDI	Course deviation indicator
C.G.	Center of Gravity
CHT	Cylinder head temperature
COMM	Communication transceiver
EFIS	Electronic Flight Information System
ELT	Emergency Locator Transmitter
EMS	Engine Monitoring System
${ }^{\circ} \mathrm{F}$	Temperature in degree of Fahrenheitt. $\quad\left({ }^{\circ} \mathrm{F}=\left({ }^{\circ} \mathrm{C} \times 1.8\right)+32\right)$
ft	Foot or feetVertical speed in feet per minute $\quad \overrightarrow{l_{2}} \quad(1 \mathrm{ft}=12 \mathrm{in}=0.305 \mathrm{~m}=305 \mathrm{~mm})$$(1 \mathrm{fpm}=0.0051 \mathrm{~m} / \mathrm{s})$
fpm	
GPS	Global Positioning System ${ }_{\text {ane }}$
hp	Power unit ($\left.{ }^{\text {a }} \mathrm{hp}=0.7457 \mathrm{~kW}\right)$
IAS	Indicated Airspeed
1 C	intercom \Rightarrow
IFR	Instrument Flight Rules
in	International Standard Atmosphere $\quad(1 \mathrm{in}=25.4 \mathrm{~mm})$
ISA	
KCAS	Calibrated Airspeed in Knots
kg	Kilogram ${ }^{\text {a }}$, (1 kg $\left.=2.205 \mathrm{lb}\right)$
KIAS	Indicated Airspeed in Knots
km	Kilometer $\quad(1 \mathrm{~km}=1000 \mathrm{~m}=0.54 \mathrm{NM}=0.621 \mathrm{SM})$
km/h	Airspeed in kilometers per hour
knot ${ }^{\text {a }}$, Airspeed in NM per hour(1 knot $=1.151 \mathrm{mph}=1.852 \mathrm{~km} / \mathrm{h}=0.514 \mathrm{~m} / \mathrm{s})$KTAS	
	True Airspeed in Knots
	Liter $\quad(1 L=0.22$ UK gal $=0.264$ US gal)
db	Pound $\quad(1 \mathrm{lb}=0.454 \mathrm{~kg})$
1bf	Force unit $\quad(1 \mathrm{lbf}=4.448 \mathrm{~N})$
m	Meter $\quad(1 \mathrm{~m}=1000 \mathrm{~mm}=3.28 \mathrm{ft}=39.37 \mathrm{in})$
mm	Millimeter ($1 \mathrm{~mm}=0.03937 \mathrm{in}$)
MAC	Mean Aerodynamic Chord
max.	Maximum
min.	Minimum or minute
mph	Airspeed in statute miles per hour ($1 \mathrm{mph}=0.87 \mathrm{knots}=1.61 \mathrm{~km} / \mathrm{h}$)

STANDARD CS-LSA

Le PS-28 Cruiser est conçu et construit suivant le standard CS-LSA.
CS-LSA, paru initialement le 27 Juin 2011
Certification Specification for Light Sport Aeroplanes

Page laissée intentionnellement blanche

CONTACTS

Czech Sport Aircraft a.s. Na Záhonech 1177/212, 68604 Kunovice

Czech Republic

Website: www.czechsportaircraft.com
E-mail: office@czechsportaircraft.com Phone: +420576514034 (Sales Dept.)

Fax: +420576519394

Emmanuel Tel: +33(0)6 30574999

info@PS28.fr
Chistian Tel:+33(0)6 88058630
christian@PS28.fr

Page laissée intentionnellement blanche

TABLE DES MATIERES

1. Généralités
2. Limitations
3. Procédures d'urgence
4. Procédures normales
5. Performances
6. Masse et Centrage
7. Description de l'aéronef et des systèmes
8. Mise en oeuvre et utilisation
9. Suppléments

SECTION 1

1. GENERALITES

1.1 Caractéristiques de l'avion
1.2 Performances
1.5

1. GENERALITES

Ce Manuel de Vol a été élaboré afin de fournir aux pilotes les informations pour une utilisation sûre et efficace du PS 28 Cruiser. Il contient 9 chapitres. II contient aussi des informations supplémentaires considérées comme étant importantes par le constructeur.

Les dates sont exprimées au format $\mathrm{j} / \mathrm{mm} / \mathrm{aa}$.
NOTE
Sauf si signalé autrement, les vitesses air sont exprimées en IASVItesse indiquée).

Avertissements, Attentions et Notes

Les définitions suivantes s'appliquent pour les avertissementsiles «attention» et les notes utilisés dans ce manuel de vol.

AVERTISSEMENT

Signifie que la non-observation de la procedure correspondante conduit a une dégradation immédiate et/ou importan̂te dela sécurité du vol, pouvant entrainer blessures ou mort.

ATTENTION

Signifie que la non-obsérvation de la procédure correspondante conduit à une dégradationomineure ou non-immédiate de la sécurité du vol

Attire l'attention sur un item particulier, qui n'affecte pas directement la sécurité, mais qui est important ou inhabituel!

1.1 Description de l'avion

Le PS-28 Cruiser est un avion conçu essentiellement pour les vols de loisirs et le voyage, et non pas pour les vols acrobatiques. Le PS-28 Cruiser est un avion monomoteur entièrement métallique à aile basse. La structure est semimonocoque. C'est un avion biplace côte à côte. Il est équipé d'un train fixe, tricycle.

Plan trois vues:

Date: 2011-09-01
Rév. No: -
Dimensions:
Envergure 8.600 m
Longueur 6.620 m
Hauteur. 2.315 m
Surface alaire $12.30 \mathrm{~m}^{2}$
Charge alaire $49 \mathrm{~kg} / \mathrm{m}^{2}$
Largeur de la cabine. 1.170 m
Débattements des commandes:
Dérive30°
$+24^{\circ} /-24^{\circ}$ Profóndeur
$+15^{\circ} / 45^{\circ}$
Ailerons.0° to $30^{\circ} \pm 1$Volets.
Trim d'ailerons $+20^{\circ} \%-20^{\circ} \pm 2^{\circ}$
Trim de profondeur$\pm 22^{\circ} /-28^{\circ} \pm 2^{\circ}$
Tab anti-balance (profondeur) $+25^{\circ} /-19^{\circ} \pm 2^{\circ}$
Moteur :
Constructeur BRP-Powertrain GmbH\&Co.KG
912 S2TypePuissance maximale73.5 kW à 5,800 RPM
Refroidissement: liquide et air
Type a . 4 -temps, 4 cylindres, opposés à plat, allumage parbougies, un arbre à came central, poussoir OHV
Hélice:
ConstructeurWOODCOMP s.r.o.Type.KLASSIC 170/3/R
Nombre de pales 3
Diamètre $1,712 \mathrm{~mm}$
Pas de l'hélice $17.5 \pm 0.5^{\circ}$
Type. 3 pales en composite, pasréglable au sol,

1.2 Performances

Masses:

Masse max au décollage et à l'atterrissage... 600 kg
Masse max. d'essence.................................. 82 kg
Masse max. des bagages dans le fuselage... 18 kg Masse max. des bagages dans chaque aile. 10 kg
Masse à vide (équipement minimum) $374 \mathrm{~kg}+2 \%$

NOTE
La masse à vide réelle est indiquée à la section 9, Supplement n 02
Charge alaire \qquad $49 \mathrm{~kg} / \mathrm{m}^{2}$
Charge de puissance \qquad $8.15 \mathrm{~kg} / \mathrm{kW}$

Vitesses:
Vitesse max au niveau de la mer.....te........ 119 KIAS
Croisière, 75% de la puissance a 3000 ft 93 KIAS
Distances franchissables et autonomie:

Distance franchissable, 512 NM	(948 km)
Autonomie..5:26 h:		
Conditions: ${ }^{\text {a }}$,		
Essence utfisabie.. 113 L		
75\% de al puissance du moteur..........................5,000 RPM		
Altitude ${ }^{\text {a }}$ -		
30 minutes		

Taux de montée :

Au niveau de la mer 825 fpm
Vitesse de pente max $\left(v_{x}\right)$............................. 55 KIAS
Vitesse de $V z \max \left(v_{y}\right)$.
62 KIAS

Vitesses de décrochage:

$V_{\text {so }}$ - plein volets, plein réduit.
V_{S} - volets rentrés, plein réduit. . 37 KIAS

Essence:

Quantité totale d'essence \qquad $114 L$

Quantité utilisable. 1134

Types d'essence approuvés \qquad voir chapitre 2.11

Puissance du moteur :

Puissance max à 5,800 RPM.
 73.5 kW

Puissance max continue à 5500 RPM .69 kW
 जो

SECTION 2

2. LIMITATIONS

2.1 Marquage des vitesse sur l'anémomètre
2.2 Vitesses de décrochage à la masse max
2.3 Plage des vitesses avec les volets sortis

2-2 2
2.4 Vitesse de manoeuvre
2.5 Vitesse max en croisière pour la structure 223 2-3
2.6 Vitesse à ne jamais dépasser fore b
2.7 Plafond pratique $\quad 2-3$
2.8 Facteurs de charge $\quad 2-3$
2.9 Manoeuvres autorisées 2-3
2.10 Masses et facteurs de charge en utilisation 2-4
2.11 Essence 2-5
2.12 Moteur : vitesses et limites d'utilisation 2-6
2.13 Marquage des instruments moteur $\quad 2-7$
2.14 Autres limitations 2-7
2.15 Étiquettés et marquages des limitations 2-9
2.16 Étiquettes et marquages divers 2-10

SECTION 2

LIMITATIONS

2. LIMITATIONS

2.1 Marquages des vitesses sur l'anémomètre

Les vitesses de décrochages indiquées NOTE

2.2 Vitesse de décrochage à la masse max au décollage Position des volets; rentrés (0)
 - décollage
 (12ㅇ)
 - atterrissage (30)

Date: 2011-09-01

NOTE

Les pertes d'altitude présentées dans le tableau sont des valeurs max. dêterminées par les essais pour un pilote à l'habilité moyenne.

2.3 Plage de vitesses volets sortis - $V_{S O}$ à $V_{F E}$
 Plage d'utilisation avec les volets
 37-75 KIAS

2.4 Vitesse de manoeuvre - V_{A}

Vitesse de manoèvre à 600 kg . 88 KIAS

2.5 Vitesse limite en utilisation normale - Vo
 Vitesse de croisière max, structure. 108 KIAS

2.6 Vitesse à ne jamais dépasser $-V_{N E}$

Vitesse à ne jamais dépasser. 138 KIAS

2.7 Plafond pratique

Plafond pratique $15,090 \mathrm{ft}$

2.8 Facteurs de charge

Facteur de charge positif maximum.. +4 g
Facteur de charǧe negatif maximum....................................... 2 g
Facteur de charge positif maximum avec les volets sortis...... $+2 g$
Facteur de charge négatif maximum avec les volets sortis..... $\quad \mathrm{Og}$

2.9 Manoeuvres autorisées

LEPPS-28 Cruiser est autorisé pour les manoeuvres normales citées cidessous:

Virages serrés ne dépassant pas 60° d'inclinaison
Huits paresseux
Chandelles
Décrochages (exceptés les décrochages dynamiques)

2.10 Masses et chargement en utilisation

Masse max au décollage.
600 kg
Masse max. à l'atterrissage 600 kg

Masse max. de carburant.
Masse max. des bagages dans le compartiment fuselage 18 kg Masse max. des bagages dans les compartiments d'aile. 10 kg Masse à vide (équipement minimum) \qquad $374 \mathrm{~kg}+2 \%$
La masse à vide réelle est indiquée à la section 9, supplèment $N^{\circ} 02$
La masse à vide réelle est indiquée à la section 9, supplèment $N^{\circ} 02$
AVERTISSEMENT
Ne pas dépasser la masse max au décollage de 600 kg .

Nombre de sièges \qquad .2

Equipage minimum (en place gauche uniquement)......... 1 pilot
Masse mini. de l'équipage. . m...................................... 55 kg
Masse max. sur chacundes sièges .115 kg

2.11 Carburant

Quantité de carburant

Quantité dans les réservoirs d'aile..................................... $2 \times 57 \mathrm{~L}$
Quantité totale de carburant.. 114 L
Quantité inutilisable...2×0.5L
Carburant utilisable... 113 L
Dissymétrie max. autorisée.
30 L
Type d'essence recommandé:

NOTE

Se reporter au Manuel d'Utilisation ROTAX, section 2.4 Carburant, et linstruction de service Rotax S/-912-016

MOGAS (Essence auto)
Standard Européen - min. RON 95EN 228 Super, EN 228 Super plus
Standard US -ASTMD4814
Standard Canadien - min. AKI 91, CAN/CGSB-3.5 Quality 3

AVGAS
StandardUS -AVGAS 100 LL (ASTM D910)
L'AVGAS 100 LL produit de plus grands efforts sur les sièges de soupapes à cause de la plus forte teneur en plomb et augmente les dépôts dans la chambre de combustion ainsi les déchets de plomb dans le circuit d'huile. Aussi, l'AVGAS ne doit être utilisée qu'en cas de problèmes de Vapor lock ou bien lorsque d'autres types de carburant ne sont pas disponibles.
2.12 Limites d'utilisation du moteur ROTAX

Type de mateur:		ROTAX 912 s 2
Fabricant du moteur:		BRP-Powertrain GmbH
Puissance	Max. au décollaqe:	73.5 kW a $5800 \mathrm{t} / \mathrm{mn}$ (max. 5 min .)
	Max. continue:	69 kW à $5500 \mathrm{t} / \mathrm{mn}$
	Croisière (75\%):	51 kW à 5000 tmn
Vitesse de rotation	Max. au décollade:	5800 timn (max. 5 min.)
	Max. continue:	$5500 \mathrm{t} / \mathrm{mn}$ e
	Croisière (75\%):	$5000 \mathrm{t} / \mathrm{mn}$
	Ralenti:	$1400 \mathrm{t} / \mathrm{mn}$ (minimum) ${ }^{\text {a }}$,
Pression d'huile	Minimum:	0.8 bar en-dessous de $3500 \mathrm{t} / \mathrm{mn}$
	Maximum:	7 bar au démarrage moteur froid
	Normalé:	2-5 baraurdessus de $3500 \mathrm{t} / \mathrm{mn}$
Température d'huile	Minimum:	$50{ }^{\circ} \mathrm{C}$
	Maximum:	$130^{\circ} \mathrm{C}$
	Normale:	$90-110^{\circ} \mathrm{C}$
Température cylindre (CHT)	Maximum:	$135{ }^{\circ} \mathrm{C}$
Température des gaz d'échap. (EGT)	Nominale:	$800^{\circ} \mathrm{C}$
	Maximum:	$850^{\circ} \mathrm{C}$
	Max. au décollade:	$880^{\circ} \mathrm{C}$
Pression d'essence	Minimum:	0.15 bar
	Maximum:	0.4 bar
Temp. ext au démarrage	Minimum:	$-25^{\circ} \mathrm{C}$
	Maximum:	$50^{\circ} \mathrm{C}$
Limite d'utilisation du moteur à zéro g and " g " négatifs		
	Maximum:	5 secondes $\dot{a}_{x}-0.5 \mathrm{~g}$ max

2.13 Marquage des instruments moteur

$\begin{aligned} & \text { Rotax } 912 \mathrm{~S} 2 \\ & \quad 73.5 \mathrm{~kW} \\ & (98.6 \mathrm{hp}) \end{aligned}$	Limite basse (ligne rouge)	Plage d'attention (arc jaune)	Plage d'utilisation normale (arc vert)	Plage d'attention (arc jaune)	Limite haute ligne rouge)
Vitesse de rotation RPM	-	0-1,400	1,400-5,500	5,500-5,800	
Pression d'huile	0.8 bar	0.8-2 bar	2-5 bar	5-7 bar	7 bar
Température d'huile	$50^{\circ} \mathrm{C}$	$50-90^{\circ} \mathrm{C}$	$90-110^{\circ} \mathrm{C}$	$110-130^{\circ} \mathrm{C}$	$130^{\circ} \mathrm{C}$
Températures cylindre (CHT)	-	to $50{ }^{\circ} \mathrm{C}$	$50-135^{\circ} \mathrm{C}$	com	$135{ }^{\circ} \mathrm{C}$
Temperature des gaz d'échap. (EGT)	-	to $300^{\circ} \mathrm{C}$	$300-850^{\circ} \mathrm{C}$	$850-880^{\circ} \mathrm{C}$	$880^{\circ} \mathrm{C}$
Pression d'essence	0.15 bar	6	0.15-0.4 bar	-	0.4 bar
Pression d'admission		x	$10-35 \mathrm{inHg}$	-	-

2.14 Autres Iimitations

/I est interdit de fumer à bord!

Autorisé pour les vols VFR de jour uniquement.

Vol sous la pluie

II n'y a pas de précaution particulière pour les vols sous la pluie.
Les qualités de vol et les performances ne sont pas particullièrement dégradées.
Quoiqu'll en soit les conditions VMC doivent être conservées!

Liste des instruments et équipements minïmum pour le

 vol VFR de jour :
Anémomètre

Altimètre
Compas (il n'est pas exigé par la CS-LSA)
Jauge carburant
Compte-tour (RPM)
Instruments moteur comme exigés par le constructeur du motent.

- Indicateur de température d'huile
- Indicateur de Pression d"huile
- Indicateur de température des têtes de cylindre

Harnais de sécurité pour chacun des sièges utilisé.

AVERTISSEMENT

Les vols IFR et les vols intentionnels en conditions givrantes sont INTERDITS !

WARNING
Emergency parachute approved for up to MWW 612 kg and max. velocity 120 knots ?

WARNING

Une quantité minimale de 64 de carburant permet une utilisation approximative en sécunté de 15 minutes du moteur!

2.15 Étiquettes et marquages des limitations

Limitations opérationnelles sur le tableau de bord

WARNINC!
DO NOT EXCEED MAXMUM TAKEOFF WEAGHT 600 KO 1320 lbs

WARNINC
IFR FLICHTS AND NITENTIONAL FLICHTS UNDER ICINGGCONDITIONS AREPR OHIBITED

APRROVED FOREDAY-VFR

For AviAtION EMER CENCY USE ONLY UNAUTHORIZED GPERATION PROHIBIIED:

Limitation de chargement dans les coffres à bagages

BAGGAGE COMPARTMENT MAX. BAGGAGE WEIGHT: 18kg/40/bs

MAX. WEIGHT IN WING LOCKER: 10kg / 221bs

Manceuvres interdites

NO INTENTIONAL SPINS! AEROBATICS RROIIBITED!

2.16 Étiquettes et marquages divers

> FUEL CAPACITY:
> 57 Litres / 15 US Gal. MOGAS RON 95/AKI 91 AVGAS 100 LL

FUEL DRAIN 》

AEROSHELL OIL SPORT PLUS 4

NO PUSH

CANOPY OPENED

CANOPY CLOSED
$1.8^{+0.2} \mathrm{bar}$
$1.2^{+0.1} \mathrm{bar}$

NO STEP

CAUTION
Le propriétaire (ou l'utilisateur) de cet avion est responsable de la lisibilité de ces étiquettes pendant la durée de vie de l'avion.

SECTION 3

3. PROCEDURES D'URGENCE

3.1 Généralités

3.2 Vitesse en cas de procédures d'urgence

3-3
3.3 Panne moteur pendant la course au décollage
3.4 Panne moteur après décollage $3-4$
3.5 Panne moteur en vol
$\rightarrow 3-4$
3.6 Démarrage en vol 3-4
3.7 Baisse ou perte de pression d'huile wism 3-5
3.8 forte pression d'huile $3-5$
3.9 Atterrissage d'urgence moteur arreté 3-6
3.10 Atterrissage de précaution avec moteur 3-6
3.11 Feu moteur au démarrage. 3-7
3.12 Feu moteur en vol 3-7
3.13 Feu d'origine électrique en vol 3-8
3.14 Descente durgence 3-8
3.15 Panne générateur 3-8
3.16 Surtenston 3-9
3.17 Sortie de vrille involontaire $3-9$
3.18 Giyrage inopiné $\quad 3-10$

319 Filtre à air obstrué $\quad 3-10$
3.20 Vibrations moteur 3-11
3.21 Atterrissage avec un pneu à plat 3-11
3.22 Atterrissage avec un train endommagé $3-11$
3.23 Perte des instruments primaires 3-11
3.24 Perte des commandes de vol 3-12
3.25 Rupture du câble de la commande des gaz 3-12
3.26 Ouverture inopinée de la verrière au décollage 3-13
3.27 Liste des alarmes de l'EMS 3-14

3. PROCEDURES D'URGENCE

3.1 Généralités

Cette section décrit les check-lists et les procédures détaillées pour faire face aux situations d'urgence qui peuvent survenir. Les situations d'urgence dues à des pannes moteur sont extrêmement rares si l'entretien et les visites pré-vol sont correctement effectués.
Quoiquil en soit, si une urgence devait survenir, les actions de base décrites dans cette section doivent être appliquées afin de corriger le probleme.

ATTENTION
Les valeurs des vifesses sont correctes pour une antenne pitot-statique standard AVIATIK WA037383.

Ces procédures d'urgence sont valables pour une helice composite tripale WOODCOMP KLASSIC 170/3/R, avec pas réglable au sol.

3.2 Vitesses pour les Procédures d'Urgence

Panne moteur après décollage
60 KIAS
(volets à la demande)
Vitesse de manoeuvre a 600 kg
88 KIAS
(volets rentrés (0 \%)
Vitesse de finesse max 60 KIAS
(volets rentres $\left(0^{\circ}\right.$))
Atterrissage de précaution avec moteur 60 KIAS
(volets en position d'atterrissage (30°))
Atterrissage d'urgence sans moteur 60 KIAS
(volets à la demande)
Descente d'urgence 138 KIAS
(volets rentrés $\left(0^{\circ}\right)$)

3.3 Panne moteur pendant la course au décollage

1.	Manette des gaz	Ralenti	
2.	Freins -	appliqués	
3.	Magnétos	-	OFF

3.4 Panne moteur après décollage

1.
2.
3.
4.
5.
6. l'atterrissage

Vitesse- maintenir 60 KIAS
Volets - comme nécessaire
Robinet carburant - BFF Magnétos - OFF
MASTER GEN OFE
MASTER BAT - OFF - avant
7. Se poser droit devant, ne virer que pour Eviter des obstacles

3.5 Perte de la puissance moteur en vol

1.
2. réelle:

Vitesse-
Altitude
maintenir 60 KIAS

- en fonction de l'altitude
- redémarrer le moteur (paragraphe 3.6) ou
- rechercher une zone propice à l'atterrissage et procéder à un atterrissage d'urgence (paragraphe 3.9).

3.6 Redèmarrage en vol

2: MASTER BAT - ON
3. EMS - ON
4. FUEL PUMP - ON
5. FUEL selector - GAUCHE ou DROITE
(vérifier placé sur le réservoir le plus rempli)- marque verte
(voir chapitre 7.11)
Date: 2011-09-01
3-4
EASA approved Rev. No.: -

3.7 Perte de pression d'huile

1. Température d'huile - vérifier

Si la température d"huile augmente:
2. Manette des gaz

- réduire à la puissance juste nécessaire pour le maintenir le vol

3. Atterrissage - dés que possible

ATTENTION
Se préparer à la panne moteur et à l'atterrissage d'urgence.

Si la température d'huile est normale:

2.	Température d'huile	surveiller
3.	Pression d'huile -	surveiller
4.	Atterrissage -	sur l'aérodrome le plus

Atterrissage - sur l'aérodrome le plus

Pression d'huile élevée

	Manette des gaz	- puissance
minimum pour le vol		
2.	Pression d'huile -	Surveiller
3.	Atterrissage	dés que possible

3.9 Atterrissage d'urgence moteur arrêté

Les atterrissages d'urgence ont généralement lieu en cas de panne moteur sans pouvoir de le remettre en route.

| 1. | Vitesse- maintenir 60 KIAS |
| :--- | :--- | :--- |
| 2. | Zone d'atterrissage \quad choisir une | zone adaptée sans obstacle

3.

intentions
4.
5.
6.
7.
8.
9.
10. l'atterrissage

RADIO-
Ignition Switch -
si possible préciser la zone et fes Robinet carburant
MASTER GEN -
Approche

Orma

Harnais
Volets - adademande
MASTER BAT àladen OFF - juste avant

3.10 Atterrissage de précaution avec le moteur

Un atterrissage de précaution est en général entrepris dans les cas où le pilote est perdu, il ne reste pratiquement plus de carburant ou à cause de mauvaises conditions météorologiques.

1. Choisiruñe zone adéquate pour l'atterrissage, déterminer la direction du yent
2. Annoncer lintention d'atterrir et le lieu.
3. Effectuer un passage basse altitude face au vent, sur le côté droit de la zone ehoisie, avec les volets sortis et inspecter complètement la zone d'atterrissage.

Effectuer un circuit de piste.
Harnais - serrés
6. Effectuer une approche avec les volets en position d'atterrissage (30°) à 60 KIAS.
7. Réduire en entrée de zone et toucher au tout début de la zone choisie.
8. Après l'arrêt de l'avion:

Magnétos

- OFF

Tous interrupteurs

- OFF

Robinet carburant

- OFF

Date: 2011-09-01 3-6 EASA approved Rev. No.: -

NOTE

Surveiller régulièrement la zone choisie pendant l'atterrissage d'urgence.

3.11 Feu moteur au démarrage

1.

Robinet carburant
OFF
2.

Manette des gaz
attention à ne pas avancer
3.

Magnétos
MASTER BAT \& GEN
Avion - quitter
OFF
4.
5.

Lutter contre le feu ou appeler les pompiers si
6. vous ne parvenez pas à l'éteindre.

3.12 Feu moteur en vol

1.
2.
3.
4.
5.

que le carburant restant dans les carburateurs soit consommé et que le moteur soit

Robinet carburant	-	OFF
Manette des gaz	-	MAX
Chauffage cabine	-	PUSH OFF
Magnetos $\quad-$	OFF	$-\quad$ après

Vitesse- maintenir 60 KIAS
6.

Atterrissage d'urgence - effectuer (paragraphe 3.9) des que possible
7. At Avion - quitter
8. Lutter contre:le feu ou appeler les pompiers si vous ne parvenez pas à l'éteindre

NOTE

Le temps estimé pour vider les carburateurs est de 30 sec. environ.

3.13 Feu d'origine électrique en vol

1.	MASTER BAT \& GEN	-	OFF
2.	Autres interrupteurs	-	OFF
3.	Chauffage cabine	-	Repousser
sur OFF			
4.	Ventilation	ouverte	
5.	Atterrissage d'urgence	-	effectuer des
que possible, selon paragraphe 3.9			

3.14 Descente d'urgence

1. Vitesse
2. Tours moteur

- max. autorisée $-\mathrm{V}_{\mathrm{NE}}=138 \mathrm{KIAS}$
- $\quad V_{\text {No }}=108 \mathrm{KIAS}$

88 KIAS

3.15 Panne de générateur

GEN "OFF" (sur l'écran EMS) rouge en surbrillance et clignotant, apparition de la barre d'alarme en bas de l'écran de l'EMS avec le message, déclenchement de la lampe d'alarme externe et de l'alerte audio.
Voltmètre (sur lécian de r^{r} EMS) indique une tension en dessous de12.5 V.
Ampèremètre (sur l'écran de 1 ' $E M S$) indique en permanence un courant négatif
1.
MASTER BAT \& GEN

- ON
Tours moteur - augmenter au dessus
$\mathrm{de} 3000 \mathrm{t} / \mathrm{mn}$
Sillindication de panne de générateur persiste:

3. MASTER GEN - recycler OFF - ON

Si l'índication de panne de générateur persiste:
4. MASTER GEN - OFF
5. Tous les équipements
électriques non nécessaires - OFF
6. Voltmètre - surveiller la tension batterie
7. Atterrir dés que possible sur l'aérodrome adapté le plus proche.

3.16 Surtension

Valeur de la tension (sur l'écran EMS) rouge en surbrillance et clignotant, apparition de la barre d'alarme en bas de l'écran de l'EMS avec le message, déclenchement de la lampe d'alarme externe et de l'alerte audio.
Voltmètre (sur l'écran EMS) indique en permanence une tension au dessus de 14.6 V .
1.

Tours moteur
réduire au minimum
nécessaire pour le vol
Si lindication de surtension persiste :
2.
3.
non indispensables
4.

MASTER GEN
Tous les équipements

- OFF

Voltmètre

batterie
5. Atterrir dés que possible surlaérodrome adapté le plus proche.

ATMENTION

Utiliser la radio, le transpondeur et le GPS le moins possible.
Dans de bonnes conditions la batterie durera environ 30 minutes.
Le moteur fonctionne indépendamment du fonctionnement de f'alternateur.

3.17 Sortie de vrille involontaire

L'avion n'âpas tendance à se mettre en vrille de façon incontrộlable, s'il est piloténormalement.
Technigue de sortie d'une vrille involontaire:

Manette des gaz	-	Réduit
Volets (si sortis) -	rentrés $\left(0^{\circ}\right)$	
Manche /Allerons	-	au neutre
Palonnier/Direction	-	A fond du côté
Manche/Profondeur	-	Vers lavant

Dés que la rotation est arrêtée:
6.
Palonnier
Au neutre
7.
Manche/Profondeur

- \quad Tirer
doucement pour revenir au vol horizontal

3.18 Conditions givrantes inopinées

ATTENTION
L’avion est certifié pour voler en conditions VMC uniquement!
1.

Quitter la zone de givrage
$1 / 2$
tour ou changement d'alitude pour rejoindre une zone où la temp.ext. est supérieure.
2.

CARBURETOR AIR TIRER Vers
CHAUD
3.

CABIN HEATER

4. Augmenter le régime pour diminuer la formation de glace sur les pales de l'hélice.
5. Faire bouger les gouvernes pour maintenirdeurlmobilité.
6. La vitesse de décrochage augmenterâen cas de givrage sur les ailes et les bords d'attaque.
7. Les indications de vitesse et d'alifitude seront erronées en cas de givrage du tube pitot.
8. Sil'on ne retrouve pas la puissance moteur ou des conditions de vol normales, se dérouter sur l'aérodrome le plus proche, ou selon les circonstances procéder à un atterrissage de précaution (3.10) ou d'urgence (3.9).

NOTE

givrage carburateur etle givrage du filtre à air se manifesteront par une diminution de la puissance et une augmentation des températures du moteur.

NOTE

Utiliser le réchauffage carbu. lors des longues descentes et dans les zones de givrage possible.

3.19 Obstruction du filtre à air

Si le moteur a des ratés, la puissance et la pression d'admission diminuent, le filtre à air peut être obstrué par des impuretés, poussières ou givre.

1. CARBURETOR AIR - TIRER/CHAUD
2. Vérifier le fonctionnement du moteur et les instruments moteur.
3. Se poser le plus tôt possible sur flaérodrome adéquate le plus proche.

NOTE			
Date: 2011-09-01	$3-13$	EASA approved	

Sil'on ne retrouve pas la puissance moteur, se dérouter sur l'aérodrome le plus proche, ou selon les circonstances procéder à un atterrissage de précaution (3.10) ou d'urgence (3.9).

3.20 Vibrations moteur

Si des vibrations moteur apparaissent, il est nécessaire :

1. De rechercher le régime moteur le moins vibratoire.
2. De se dérouter sur l'aérodrome le plus proche ou de procéder à un atterrissage de précaution (paragraphe 3.10).

3.21 Atterrissage avec un pneu à plat

1. Pendant l'atterrissage, à l'aide des ailerons, maintenir la roue endommagée au-dessus du sol le plus longtemps possible.
2. Contrer à la direction pour maintenir l'axe.

3.22 Atterrissage avec une jambe de train endommagée

1. Si une jambe de train principal est endommagée, se poser à la vitesse la plus faible possible et si possible maintenir l'axe pendant le roulage.
2. Si la jambe dutrain ayant est endommagée, se poser à la vitesse la plus faible possible ef maintenir le nez haut, en conservant le manche en arrière, le plus longtemps possible

3.23 Perte des instruments primaires

Mauvais fonctionnement ou panne de I'EFIS
Breaker de l'EFIS - ON
Interrupteur AVIONICS - ON
3. Utiliser l'anémomètre, l'altimètre, le compas de secours et le GPS pour le restant du vol.
4. Se poser dés que possible

ATTENTION
Le GPS affiche uniquement la vitesse sol - prendre en compte la vitesse du vent!

1. Mauvais fonctionnement ou panne de l'EMS
$\begin{array}{llll}2 . & \text { Breaker de l'EMS } & - & O N \\ 3 . & \text { Interrupteur de l'EMS } & - & \text { ON }\end{array}$
2. Se poser dés que possible

ATTENTION

Ne pas utiliser la pleine puissance du moteur sans indication du nombre detours!

3.24 Perte des commandes de vol

Perte du contrôle latéral
Utiliser le Trim d'ailerons et la direction pour contrôletlinclinaison.

> ATTENTION ${ }_{l}^{\text {ATE }}$
> Éviter les virages incinés de plus de 15° !
> Ne pas sortirgles volets!

Perte du contrôle longitudinal
Utiliser le Trim de profondeur et les gaz pour changer l'assiette de l'avion.

ATTENTION

Éviter les manoeuvres bưsques ! L'atterrissage nécessitera une longueur de piste plus grande!
Ne pas sortir les volets!

3.25 Rupture des câbles de la manette des gaz

S'lliest pas possible de régler la puissance du moteur:
Magnétos - OFF
Vitesse- maintenir 60 KIAS
3.

Effectuer un atterrissage d'urgence conformément au paragraphe 3.9

3.26 Ouverture inopinée de la verrière pendant le décollage

Pendant le décollage - rotation effectuée, la verrière s'ouvre de 50 mm environ.

Pendant la montée et la descente avec une vitesse de $60-75$ KIAS, la verrière reste ouverte entre $50-80 \mathrm{~mm}$.

Pendant le vol horizontale avec une vitesse de $60-80$ KIAS, la verrière reste ouverte entre $50-80 \mathrm{~mm}$.

Dans tous les cas mentionnés précédemment - il n'y a pas de probleme pour le vol, pas de vibration, bon contrôle de la machine, et pas de changement des caractéristiques de vol.

II n'est pas possible de fermer la verrière
Procédure recommandée si la verriëre s'ouvre pendant le décollage :

1. N'ESSAYEZ PAS DE FERMER LA VERRIERE
2. Poursuivre le décollage
3. Monter à l'altitude de sécunité

- maintenir la vitesse à 62 KIAS

4. Poursuivez normalement le vol dans le circuit de piste

- vitesse max. 75 K/AS.

5. Atterrir

- après l'arrêt, fermer et verrouiller la verrière

Recommandation: - Avant le décollage, vérifier manuellement le verrouillage dê la verrière en la poussant vers le haut.

ATTENTION

(2) Pendant le vol, verrière non verrouillée, ne pas se mettre en glissade ou dérapage.
3.27 Lise des alarmes sur I'EMS

SECTION 4

4. PROCEDURES NORMALES

4.1 Visite pré-vol
4.2 Démarrage moteur
4.3 Roulage
4.4 Décollage normale
4.5 Montée

4-2 2
4.6 Vitesse de meilleure pente de montée (V), $\quad 4-9$
4.7 Vitesse de meilleur taux de montéé $\left(V_{y}\right)$, 4.9
4.8 Croisière 4-9
4.9 Descente 4.9
4.10 Approche 4-10
4.11 Atterrissage normal + 4-10
4.12 Décollage et Atterrissage courts : 4-11
4.13 Procédures deremise de gaz 4-12
4.14 Parking et amarrage 4-12
4.15 Caracteristiques du bruit - 4-12

PROCEDURES NORMALES

Ce chapitre décrit les procédures et les check-lists pour une utilisation normale de l'avion.

ATTENTION

Les valeurs des vitesses-air sont valables pour une antenne standard AVIATIK WA037383.
Ces procédures normales sont valables avec une hélice standard WOODCOMP
KLASSIC 170/3/R, avec 3 pales en composite, à pas réglable au sol.

4.1 Visite Pré-vol

Il faut faire une visite pré-vol, chaque jour avant le premier vol ou après un assemblage de l'avion. Une visite incomplète ou mal faite peut provoquer un accident. Faire la visite pré-vol en suivant les instructions contenues dans la check-list.

NOTE

Le mot "état" dans les consignes signifie une inspection visuelle pour vérifier des déformations, des rayures des zones de frottement, de corrosion ou tout autre dégât qui pourrait dégrader la sécurité des vols.

Le constructeur recommande d'effectuerla visite pré-vol, comme suit :

Check-list Visite Pré-vol

Rev. No.:-

Rev. No.: -

AVERTISSEMENT

Vérifier, visuellement, le niveau de carburant dans les réservoirs avant chaque vol, pour être sûr de disposer de suffisamment de carburant pour le vol envisagé.

AVERTISSEMENT

Dans le cas de stationnement de longue durée, il est recommandé de fourner Thélice plusieurs fois (Magnétos OFFl). Cela facilitera le démarrage du moteur. Toujours tenir les pales parleur surface et pas uniquement par les bords.

4.2 Mise en route du moteur

4.2.1 Avant mise en route

BRS-aetivating handle - memove safetypin
4.2.2 Mise en route

OFF (repoussé)
FUEL selector

$$
\begin{aligned}
& \text { 4.2.2 MIse en route } \\
& \text { 1. CHOKE A } \\
& \text { 2. } \\
& \text { maintenir) } \\
& -\quad \text { moteur chaud - } \\
& \text { 3. } \\
& \text { (Gauche oudroit suivant }
\end{aligned}
$$

Manette des gaz - Ralenti ON (tiré à fond et
quantité); vérifier la bonne position - marque verte (voir Chapitre 7.11)
MASTER BAT - ON
EMS - ON O
FUELP
7.
Abords - dégagés
8.

START
après le démarrage
Après mise en route:
9.
10.

11 :
12.

MASTER GEN - ON
AVIONICS - ON
FUELP - OFF
Autres interrupteurs - ON à la

13.	CHOKE	repousser	
progressivement			
14.	Manette des gaz	-	maintenir max.
2,500 t/mn penda	uffage		

ATTENTION

Le démarreur ne doit être utilisé que pendant 10 sec max., suivies de 2 mn de refroidissement.

Dés que le moteur tourne, ajuster les gaz vers un régime, non vibratoire, aux alentours de 2,500 t/mn.

Vérifier que la pression est établie (2 bar mini) dans les 10 sec .
Par température extérieure froide, continuer de surveiller la pression d'huile, car elle peut chuter à nouveau à cause d'une augmentation de la résistance du fluide dans les canalisations d"huile. Le régime moteur ne devra pas être auğmenté tant que la pression d'huile ne sera pas stabilisée.

Pour éviter des surcharges, démarrer le moteur avec la manette des gaz au ralenti ou ouverte à 10% max.

4.2.3 Chauffage moteur

Il faut caler les roues pour un point fixe moteur Commencer par chauffer le moteur pendant 2 mn à $2000 \mathrm{t} / \mathrm{mn}$, ensuite poursuivre à $2500 \mathrm{t} / \mathrm{mn}$ jusqu'à ce que la température de thuile atteigne $50{ }^{\circ} \mathrm{C}$ La durée du chauffage moteur dépend de la température ambiante Vérifier les températures et les pressions.

4.3 Roulage

1. Volets
2. PARKING BRAKE
3. Freins

- vérifiés au début du roulage

Utiliser moteur et freins comme nécessaire. Utiliser les freins pour se diriger au sol. Rouler prudemment quand la force du vent dépasse 20 noeuds. Maintenifle manche au neutre.

NOTE

Pendant les temps d'attente, garder un régime entre 2000 to 2.200 t/mn.

4.4 Décollage normal

4.4.1 Point fixe

ATTENTION

Le point fixe doit se faire face au vent. Ne pas le faire sur un sol meuble (I'hélice pourrait aspirer des débris, qui peuvent endommager les bords d'attaque des pales).

1. Freins - serrés au max.
2. Manette des gaz

- MAX

3. Régime

- vérifier ($5,000 \pm 100 \mathrm{t} / \mathrm{mn}$ - e Vent calme)

4. Paramètres moteur

- dans les limites

5. Manette des gaz

- RALENTI

6. Remettre des gaz

- vérifier la montée en régime du moteur

ATTENTION

Pour éviter des surcharges moteur, attendre ènviron 3 sec. après avoir réduit pour que le régime soit stabillsé, avant de ré-accélérer.
7. Vérification magnétos

régime $4000 \mathrm{t} / \mathrm{mn}$

passer les magnétos successivement sur
L-BOTH - R-BOTH
(la chute sur une magnéto ne doit pas dépasser $300 \mathrm{t} / \mathrm{mn}$, la différence de régime entre les 2 magnétos) L and R ne doit pas dépasser 115 t/mn.)
8. RECHAUF CARBU.

- TIRER SUR CHAUD
- Vérifier le réchauffage carburateur (le régime moteur ne doit pas chuter de plus de $100 \mathrm{t} / \mathrm{mn}$.)
- repousser OFF

9. Manette des gaz

- RALENTI

NOTE

Pour vérifier les magnétos, il ne faut pas mettre les 2 circuits sur OFF simultanément.

4.4.2 Avant décollage

NOTE
La position des trims d'aileron et de profondeur est affichée sur l'écran de l'EMS.
Seule la position du trim de profondeur est affichée sur l'EFIS.
La positon du trim d'aileron peut être vérifiée visuellement en observant l'aileron de
droite.

NOTE

Les écrans principaux de l'EFIS et de l'EMS sont montrés dans la Section 9 Supplément No. 2.

1. EFIS et EMS

- affichage des écrans principaux

2. Altimètre

- régié

3. Trims

- au neutre sur la marque verte

4. Commandes de vol

- libres de mouyement

5. Verrière

- fermée, verrouillee

Recommandation: - Avant le décollage, vérifier manuellement le verrouillage de la verrière en la poussant vers le haut.
6. Harnais - attache
7. Robinet carburant
8. Magnétos
marque verte (voir Chapitre 7.11)
9. Volets

BOTH

- position décollage $\left(12^{\circ}\right)$

4.4.3 Décollage

1. Manettedes gaz

- MAX

2. Régimemoteur

- vérifier ($5000 \pm 100 \mathrm{t} / \mathrm{mn}$ - par vent calme)

3. Paramétres moteur

- vérifier dans les limites

4. Manche

- position neutre en profondeur
à $30-34$ noeuds tirer doucement sur le
manche pour soulager la roue avant

5. Rotation

- à 40-44 noeuds

6. Montée

- débuter en atteignant Vi 62 noeuds
- appliquer

7. Freins
8. Volets

- rentrés $\left(0^{\circ}\right)$ à l'altitude de sécurité
(vitesse max. volets sortis 75 noeuds)
- à la demande

9. Trims
Le décollage est interdit si: AVERTISSEMENT
Le moteur ne fourne pas normalement (ratés, vibrations.)
Les valeurs lues sur les instruments sont en dessous des limites
opérationnelles.
Les systèmes (c.a.d. freins, commandes ou avionique) ne fonctionnent pas
normalement
La valeur du vent de travers dépasse les limites autorisées
(voirla Section 5 Performance, 5.7 Vent de travers démontré)

4.5 Montée

1. Manette des gaz \quad MAX
(max. 5800 t/mn pendant 5 min max. puissance max. continue $5500 \mathrm{t} / \mathrm{mn}$)
2.

Vitesse- $\quad V=55$ noeuds (pente max.)
$V_{y}=62$ noeúds ($V z$ max.)
Trims -+ àla demande
4. Paramètres moteur - température d'huile, pression d'huile et CHT, dans les limites

ATTENTION

Si la température cylindre oula température d'huile et/ou la température du liquide de refroidissement approchent ou dépassent les limites, réduire l'assiette de montée pour revenir dans les limites. Si cela ne change pas, le problème provient d'une autre cause que de la pleine puissance à basse vitesse.

4.6 Vitesse de meilleure pente $\left(V_{x}\right)$: 55 noouds

4.7 Vitesse de Vz max. $\left(V_{y}\right)$: 62 noeuds

4.8 Croisière

Se reporter à la Section 5 , pour les paramètres croisière recommandés.

4.9 Descente

1. Vitesse de finesse max. - 60 noeuds

4.10 Approche

1.
2.

nécessaire
3.
4.
5.
$\begin{array}{lll}\text { Vitesse d'approche } & - & 60 \text { noeuds } \\ \text { Manette des gaz } & - & \text { comme }\end{array}$
Volets - position décollage (12°)
Trims - à la demande
Harnais - attachés

ATTENTION
Il n'est pas recommandé de réduire les gaz complètement au ralenti, pendant l'approche finale et les longues descentes. En pareil cas, le moteur peut être trop refroidi et une perte de puissance peut survenir. Descendre avec un régime aux alentours de $3000 \mathrm{t} / \mathrm{mn}$ et une vitesse de 60-75 noeuds et vérifier que les paramètres moteur sont dans les limites autorisées.

4.11 Atterrissage normal

4.11.1 Avant atterrissage

1.
2.
3.
4.
5.

4.11.2 Atterrissage
1.
2.
3.

Manette des gaz
Se poser sur le train principal
Freiner- comme nécessaire
(après avoir posé la roue avant)

Volets - rentrés $\left(0^{\circ}\right)$

EMS - écran principal position atterrissage $\left(30^{\circ}\right)$
à la demande - 60 noeuds à la demande
Vitesse
Volets -
Trims -

4.11.3 Après atterrissage

1.
2.

au roulage
3. Manette des Gaz - régime adapté Trims - position neutre - marque verte

RALENTI

4.11.4 Arrêt moteur

1. Manette des gaz
2. Paramètres

- Ralenti
- paramètres moteurs dans les limites

3.
4.
5.
6.

Magnétos -	OFF	
Interrupteurs -	OFF	
MASTER BAT \& GEN	-	OFF
Robinet carburant	-	OFF

ATTENTION

Les refroidissements rapides du moteur doivent être évités. Ceux-ci surviennent pendant les descentes, les roulages à bas régime ou les arrêts moteur immédiatement aprés l'atterrissage
En conditions normales, la température du moteur se stabillise pendant la descente, le roulage à une température correcte pour pouvoir couperle moteur. Si nécessaire, laisser refroidir le moteur à un régỉme êntre 2000 to $2200 \mathrm{t} / \mathrm{mn}$ pour stabiliser la température avant de couper le moteur.

4.12 Procédures décollage et atterrissage sur piste courte.

Pas de procédure particulière

4.13 Procédure de remise de gaz

1.
2.
3.
4.
5. noeuds
6.

sécurité
7.
Manette des gaz - MAX (max. 5800 t/mn pendant 5 min max. puissance max. continue $5500 \mathrm{t} / \mathrm{mn}$)
Vitesse- min. 60 noeuds
Volets - position décollage (12 ${ }^{\circ}$)
(vitesse max. volets sortis 75 noeuds)
Trims - à la demande
Montée - après avoir afteint 62
Volets - rentrés $\left(0^{\circ}\right)$ allailitude de
(vitesse max. volets sontis 75 noeuds)
Trims - alademande

4.14 Parking

1.
2.
3.
4.
5. nécessaire
6.

NOTE
Il est recommandé d"utiliser le frein de parking pour les stationnements de courte durée uniquement, entre deux vols au cours d'une même journée. Après le dernier vol et par fempérature ambiante froide, ne pas utiliser le frein de parking, mais mettre des cales en place.

Utiliser les anneaux sur sous les ailes et sous la partie arrière du fuselage pour attacher l'avion. Placer le manche vers l'avant et l'attacher avec le palonnier. S'assurer que la verrière est bien fermée et verrouillée.

4.15 Caractéristiques du bruit

Le niveau de bruit en accord avec les exigences du document CS-36, Am. 2 (ICAO Annexe 16, Volume I, Chapitre 10-10.4 b) a été mesuré à $64.4 \pm 1.2 \mathrm{~dB}(\mathrm{~A})$

SECTION 5

5. PERFORMANCES

5.1 Distances de décollage
5.2 Distances d'atterrissage
5.3 Taux de montée
5.4 Vitesses de croisière
5.5 Régimes moteur et consommations
5.6 Calibration de la chaîne anémométrique.
5.7 Performances démontrées par vent fort

$$
5-3
$$

5. PERFORMANCES

Les chiffres annoncés ont été relevés aux cours de vols d'essai réels, avec un avion et un moteur en bonnes conditions et en utilisant les techniques normales de pilotage d'un pilote moyen.
Les performances annoncées dans cette section sont valables à la masse max. de 600 kg , en conditions ISA, sauf si cela est signalé comme êtant différeñt.
Les performances annoncées sont valables pour un avion equipé avec un moteur ROTAX 912 S2 d'une puissance max. de 73.5 kW et dune hélice WOODCOMP KLASSIC 170/3/R, à trois pales en composite, dont le pas ajustable au sol est réglé à $17.5 \pm 0.5^{\circ}$.

ATTENTION

Les valeurs de vitesse-air sont mesurées avec une sonde pitot standard AVIATIK WA037383 pitot-statigue.

5.1 Distances de décollage

Conditions: - Altitude: Oft ISA

- Puissance moteur: max. takeoff
- Volets: 12°

SURFACE de la PISTE	Distance de roulement au décollage	Distance de décollage obstacle $50 \mathrm{ft}(15 \mathrm{~m})$		
	nt	m	n	m
PISTE EN DUR	463	141	1270	387
HERBE	702	214	1499	457

5.2 Distances d'atterrissage

Conditions: - Altitude: OfISA

- Puissance moteur: réduit
- Volets: 30°

Utillisation normale des freins

5.3 Taux de montée

5.4 Vitesses de croisière

5.5 Régimes et consommations de carburant

Altitude	A	1000					
Régime	$t / m n$	4200	4500	4800	5000	5300	5500
Consommation	L/h	13.6	15.7	18.0	19.5	21.9	23.7
Vitesses (noeuds)	KIAS	72	81	91	96	105	112
	KCAS	72	80	89	94	102	108
	KTAS	73	81	89	95	103	109

Autonomie et Distance franchissable avec 113 Iitres

Autonomie	$n h: m m$	$8: 18$	$7: 11$	$6: 16$	$5: 47$	$5: 09$	$4: 46$
Distance franchissable	$N M$	607	583	559	551	531	520
		km	1123	1080	1035	1020	984

Autonomie et Distance franchissable avec 90 Iitres.

Autonomie	hh:mm	$6: 37$	$5: 43$	$5: 00$	$4: 36$	$4: 06$	$3: 47$
Distance franchissable	NM	483	464	445	438	423	414
		km	895	860	824	812	784

Autonomie et Distance franchissable avec 60 litres

Autonomie	$h h: m m$	$4: 24$	$3: 49$	$3: 20$	$3: 04$	$2: 44$
Distance	$N M$,	322	310	297	292	282

Autonomie et Distance franchissable avec 30 litres

Autonomie,	hh:mm	$2: 12$	$1: 54$	$1: 40$	$1: 32$	$1: 22$	$1: 15$
Distance	NM	161	155	148	146	141	138
	km	298	287	275	271	261	256

Autonomie et Distance franchissable avec 15 Iitres

Autonomie	hn:mm	1:06	0:57	0:50	0:46	0:41	0:37
Distance franchissable	NM	81	77	74	73	71	69
	km	149	143	137	135	131	128

Altitude	$f t$	3000					
Régime moteur	$t / m n$	4200	4500	4800	5000	5300	5500
Consommation	L/h	13.2	15.3	17.5	19.0	21.4	23.3
Vitesse (noeuds)	KIAS	68	78	86	93	102	108
	KCAS	69	77	85	91	99	104
	KTAS	72	80	88	94	102	108

Autonomie et Distance franchissable avec 113 litres

Autonomie	$h h: m \mathrm{~mm}$	$8: 33$	$7: 23$	$0: 27$	$5: 56$	$5: 16$	$4: 50$
Range	NM	616	591	568	559	539	524
	km	1142	1094	1052	1035	${ }^{997}$	970

Autonomie et Distance franchissable avec 90 litres

Autonomie	hh:mm	$6: 49$	$5: 52$	$5: 08$	$4: 44$	$4: 12$	$3: 51$
Range	NM	491	471	453	445	429	417
	km	909	872	838	825	794	773

Autonomie et Distance franchissable avec 60 itres

Autonomie	$h h: m m$	$4: 32$	$3: 55$	$3: 25$	$3: 09$	$2: 48$	$2: 34$
Range	$N M$	327	314	302	297	286	278
	km	606	581	559	550	530	515

Autonomie et Distance franchissable avec 30 litres

Autonomie	$h h m m^{m}$	$2: 16$	$1: 57$	$1: 42$	$1: 34$	$1: 24$	$1: 17$
Range	$N \mathrm{Nm}$	164	157	151	148	143	139

Autonomie et Distance franchissable avec 15 litres

Autonomie	hh:mm	$1: 08$	0:58	0:51	0:47	0:42	0:38
Range	NM	82	78	75	74	71	70°
	km	152	145	140	137	132	129

Altifude	f	5000					
Régime moteur	$t / m n$	4200	4500	4800	5000	5300	5500
Consommation	Lh	12.9	14.9	17.2	18.7	21.1	22.8
Vitesse (noeuds)	KIAS	65	74	83	89	97	103
	KCAS	66	74	82	87	95	100
	KTAS	71	79	87	93	101	107

Autonomie et Distance franchissable avec 113 litres

Autonomie	$h h: m \mathrm{~m}$	$8: 45$	$7: 35$	$6: 34$	$6: 02$	$5: 21$	$4: 57$
Distance	$N M$	622	599	572	562	541	530
franchissable	km	1152	1110	1059	1041	1002	982

Autonomie et Distance franchissable avec 90 litres

Autonomie	$h h: m m$	$6: 58$	$6: 02$	$5: 13$	$4: 48$	$4: 15$	$3: 56$
Distance	NM	495	477	455	448	431	422
	km	917	884	843	829	798	782

Autonomie et Distance franchissable avec 60litres

Autonomie	hh:mm	$4: 39$	$4: 01$	$3: 29$	$3: 12$	$2: 50$	$2: 37$
Distance	$N M$	330	318	303	298	287	282
	franchissable	km	612	589	562	553	532
				521			

$$
\text { Autonomie et Distance franchissable avec } 30 \text { litres }
$$

Autonomie	nh:mi	$2: 19$	$2: 00$	$1: 44$	$1: 36$	$1: 25$	$1: 18$
Distance	NM	165	159	152	149	144	141
franchissable	km	306	295	281	276	266	261

Autonomie et Distance franchissable avec 15 /itres

Autenomie	th:mm	$1: 09$	$1: 00$	$0: 52$	$0: 48$	$0: 42$	$0: 39$
Distance franchissable	NM	83	80	76	75	72	70
	km	153	147	141	138	133	130

Altitude	$f t$	7000					
Régime moteur	$t / m n$	4200	4500	4800	5000	5300	5500
Consommation	Lh	12.5	14.6	16.8	18.4	20.8	22.3
Vitesse (noeuds)	KIAS	62	69	79	84	92	98
	KCAS	63	70	78	83	90	95
	KTAS	69	77	85	91	99	105

Autonomie et Distance franchissable avec 113 litres

Autonomie	hh:mm	$9: 02$	$7: 44$	$6: 43$	$6: 08$	$5: 25$	$5: 04$
Distance franchissable	NM	624	596	572	559	538	532
		km	1155	1104	1059	1035	996

Autonomie et Distance franchissable avec 90 litres

Autonomie	hb:mm	$7: 12$	$6: 09$	$5: 21$	$4: 53$	$4: 19$	$4: 02$
Distance franchissable	NM	497	475	455	445	428	424
	km	920	879	843	824	793	785

Autonomie et Distance franchissable avec 60 iltres

Autonomie	hb:mm	$4: 48$	$4: 06$	$3: 34$	$3: 15$	$2: 53$	$2: 41$
Distance	NM	$331 \times$	316	304	297	286	283
franchissable	km	613	586	562	550	529	523

Autonomie et Distance frapchissable avec 30 litres

Autonomie	himm	$2: 24$	$2: 03$	$1: 47$	$1: 37$	$1: 26$	$1: 20$
Distance franchissable	Nm	156	158	152	148	143	141

Autonomie et Distance franchissable avec 15 litres

Autonomie	hh:mm	$1: 12$	$1: 01$	$0: 53$	$0: 48$	$0: 43$	$0: 40$
Distance	NM	83	79	76	74	71	71
	franchissable	km	153	147	141	137	132
		131					

Altitude	$f t$	9000					
Régime moteur	$t / m n$	4200	4500	4800	5000	5300	5500
Consommation	L'h	12.2	14.3	16.4	18.0	20.4	21.8
Vitesses (noeuds)	KIAS	57	64	73	79	86	92
	KCAS	59	65	73	78	85	90
	KTAS	67	74	83	89	97	103

Autonomie et Distance franchissable avec 113 litres

Autonomie	hh:mm	$9: 15$	$7: 54$	$6: 53$	$6: 16$	$5: 32$	$5: 11$
Distance franchissable	NM	621	585	572	559	537	534
		km	1149	1083	1059	1035	995

Autonomie et Distance franchissable avec 90 litres

Autonomie	hh:mm	$7: 22$	$6: 17$	$5: 29$	$5: 00$	$4: 24$	$4: 07$
Distance	$N M$	494	466	455	445	428	425
	km	915	863	844	824	793	788

Autonomie et Distance franchissable avec 60 litres

Autonomie	$h \mathrm{~h}: \mathrm{mm}$	$4: 55$	$4: 11$	$3: 39$	$3: 20$	$2: 56$	$2: 45$
Distance franchissable	NM	330	310	304	297	285	283
	km	670	575	562	549	528	525

Autonomie et Distance fraphissable avec 30 iltres

Autonomie	hamm	$2: 27$	$2: 05$	$1: 49$	$1: 40$	$1: 28$	$1: 22$
Distance franchissable	NM	165	155	152	148	143	142

Autonomie et Distance franchissable avec 15 Iitres

Autonomie	hh:mm	$1: 13$	$1: 02$	$0: 54$	$0: 50$	$0: 44$	$0: 41$
(Distance	NM	82	78	76	74	71	71
	km	153	144	141	137	132	131

5.6 Calibration du circuit anémométrique

KIAS	KCAS
30	36
35	40
40	45
45	49
50	53
55	57
60	62
65	66
70	71
75	75
80	79
85	83
90	4-88.
95 *	\% 92
100	97
- 105	101
- 110	106
115	111
120	115
125	120
130	125
135	130
140	134

5.7 Performances démontrées par vent fort

Vitesse max. démontrée du vent de face, décollage et atterrissage: 24 noeuds
Vitesse max. démontrée du vent travers, décollage et atterrissage: 12 noeuds
Abaque pour le calcul du vent de face et travers

Page laissée intentionnellement blanche

SECTION 6

6. MASSE ET CENTRAGE

6.1 Introduction
6.2 Procédure pour la pesée
6.3 Masses et chargement en utilisation
6.4 Schéma pour masse et centrage
6.5 Détermination de la plage de C.G.
6.6 Détermination de la masse et du centrage
6.7 Masse du carburant - abaque de caltcul

6-2
6.8 Variation du centrage en fonction du carburant

6-2
6.6.3
6.9 Feulle de masse et centrage w nem
6.10 Liste des équipements installés 6-15

6. MASSE ET CENTRAGE

6.1 Introduction

Cette section contient les enregistrements de masse et centrage et les plages de chargement pour une utilisation en sécurité du P-28 Cruiser.
Les procédures de pesée et la méthode de calcul afin de déterminer la plage de chargement autorisée sont contenues dans le document "FAA Aviation Advisory Circular AC.43.13-1B".

6.2 Procédure pour la pesée de l'avion

1. Préparation

 que les objets inutiles.- Gonflez les preus à la pression recommandée.

Vidanger le carburant.
-
Ajouter lhuile, les liquides hydrauliques à la valeur maximum spécifiéef

- . Rentrer les volets, fermer la verrière et les autres trappes de visite, enlever les systèmes de blocage des commandes.
- $\quad{ }^{4} \quad$ Mettre l'avion à niveau, en se référant à la ligne de rivets situee sur le fuselage (droite et gauche), sous le cadre de verrière.

2. Mise à niveau

- Placerles balances sous chaque roue.

Dégonfler le pneu avant et/ou abaisser ou soulever le train avant pour régler parfaitement le niveau à bulle.
3. Pesée

- Lorsque l'avion est à niveau et les freins desserrés, relever les masses lues sur chacune des balances. Déduire les tares, le cas échéant.

4. Calcul

- Le point de référence (DATUM) pour la mesure des bras de levier se situe sur le bord d'attaque de la nervure No. 4.
- Pour obtenir les distances LR and LL, mesurer horizontalement (le long de
la ligne centrale de l'avion) à partir d'une ligne qui relie les points de référence sur l'aile gauche à celuì situé sur l'aile droite.
- Pour obtenir la distance $L N$, mesurer horizontalement et parallèlement à la ligne centrale de l'avion, depuis l'axe de la roue avant sur le côté gauche jusqu'au point de référence de l'aile gauche. Répéter l'opération sur le côté droit et faire une moyenne des deux mesures.

5. Pour déterminer la masse et la position du Centre de Gravité (C.G.), utiliser les résultats trouvés aux items 3 et 4 .
6. La masse de base à vide peut être déterminée en complétant les tableaux appropriés.

6.3 Masses et chargements en opération

Masses:

Masse max. au décollage (M.T.O.W.) 600 kg Masse max. à l'atterrissage (M.L.W.) \square \square	

Masse max. des bagages dans le fuselage. ${ }^{2} \ldots \ldots \ldots18 \mathrm{~kg}$
Masse max. des bagages dans chaque alile $=\ldots ~ 10 \mathrm{~kg}$

Équipage:
Nombre de sièges
.2
Équipage minimum (uniguerent sur le siège de gauche). 1 pilot
Masse minimum équipage 55 kg
Masse maximurfequipage sur chaque siège................... 115 kg
Bras de levier:
Pilote/Passager.. 700 mm
Compartiment à bagage.. $1,310 \mathrm{~mm}$
Compartiment d'aile.. 600 mm
Carburant dans les réservoirs. 180 mm

La masse réelle à vide est donnée en Section 9, Supplément No. 02.

NOTE

Pour les besoins de ce manuel, la masse spécifique du carburant est de $0.72 \mathrm{~kg} / \mathrm{L}$, afin de convertir les unités de volume en unités de masse.

6.4 Schéma pour masse et centrage C.G.

6.5 Détermination de la plage de C.G.

6.5.1 Plage de centrage:

Plage de centiage à la masse à vide.
28.5 to 29.5% of. MAC
427.5 to 442.5 mm of MAC

Plage de centrage en opération.
28 to 35% of MAC
420 to 525 mm of MAC

6.5.2 Détermination du centre de gravité

Après chaque changement des équipements ou bien si la masse de lavion a changé suite à une modification ou une réparation, il faut procéder à une nouvelle pesée de la façon suivante:

Détermination du C.G. à la masse à vide

1. Exécuter une pesée conformément au paragraphe 6.2 .
2. Reporter les valeur des masses et des bras de levier dans le tableau "C.G. à vide",
Le bras de levier de la roue avant est négatif (-).
3. Calculer et reporter le moment pour chacune des rouesen utilisant la formule suivante:
MOMENT (kg mm) $=$ MASSE $(\mathrm{kg}) \times$ BRAS de EEVIER (mm)
Le bras de levier de la roue avant est negatif (-).
4. Calculer et reporter la masse totale et le moment.
5.

Déterminer et reporter la position du C G. à la masse à vide, en utilisant la
formule suivante:

BMTE 100
C.G. à la masse à vide $=-\quad-\quad(\mathrm{mm}) \times x^{x}$ (\%) of MAC MAC

Tableau pour la dětermination du CG. à vide

ITEM	MASSE	BRAS DE LEVIER mm	MOMENT kg mm
*Roue principale	$W_{R}=$	$L_{R}=$	
$\frac{\text { Roue }}{4}$Run principale	$W_{L}=$	$L_{L}=$	
Roueavant	$W_{N}=$	$L_{N}=-$ negative arm	*
(t)TOTAL	Masse à vide: $M_{T E}=$	C.G. $=\quad$mm \%MAC	Moment: $M_{T E}=$

NOTE: La masse à vide comprend lhuile, le liquide de refroidissement, le liquide hydraulique et le carburant inutilisable.

NOTE

La masse réelle et la fiche de centrage de cet avion figurent en Section 9, Supplément No. 02

Feuille d'enregistrement pour masse et centrage
FEUILLE VIERGE MASSE ET CENTRAGE
Tableau pour la détermination du C.G. à la masse à vide

	ITEM	$\underset{\mathrm{kg}}{\mathrm{MASSE}}$	BRAS DE LEVIER mm	MOMENT kg mm
	Roue principale	$W_{8}=$	$L_{R}=$	
	Roue principale	$W_{L}=$	$L_{L}=$	
	Roue avant	$W_{N}=$	$L_{N}=-{ }^{\text {negative arman }}$	
	TOTAL	Masse à vide: $M_{T E}=$	$\text { C.G. }=$	Moment de lavion: $M_{T E}=$

NOTE: La masse a vide comprend lhulle, le liquide de refroidissément, le liquide hydraulique et le carburant inutilisable.

Plage du C.G. à la masse a vide; 427.5 to 442.5 mm 28.5 to 29.5% of MAC
Plage du C.G. en opération: 420 to 525 mm /f 28 to 35% of MAC
MAC : $1,500 \mathrm{~mm}$

MOMENT $(\mathrm{kg} \mathrm{mm})=$ Masse $(\mathrm{kg}) \times$ Bras de levier (mm)

Immatriculation:
No de série:
Date:
Par:

6.6 Vérification de la charge et du C.G.

Avant le vol, il faut déterminer si la masse et la position du C.G. de l'avion sont dans les limites autorisées.
Il faut procéder de la manière suivante :

1. Reporter la masse à vide réelle, le bras de levier et le moment sur le tableau.
2. Reportez les masses du pilote, du passager, des bagages et du carburant sur le tableau.
3. Calculer et reporter le moment pour chaque item en utilisântsa formule cidessous:
MOMENT $(\mathrm{kg} \mathrm{mm})=$ MASSE $(\mathrm{kg}) \times$ BRAS de LEVIER (mm)
4. Calculer et reporter la masse totale et le moment
5. Déterminer et reporter la position du C.G. en utilisant la formule suivante:

6. Si la charge ou la position du C.G. depasse les valeurs max. autorisées, enlever des bagages ou du carburant et recommencer le calcul.
7. Il est important de calculer la position du C.G. sans carburant, au cas d'une consommationcomplète en fin de vol-centrage le plus arrière.

Tableau pour la vérification de la charge et du centrage

ITEM	$\underset{\mathrm{kg}}{\mathrm{MASSE}}$	BRAS DE LEVIER mm	MOMENT kg mm
AVION A VIDE			
PILOTE		700	
PASSAGER		700	
$\begin{gathered} \text { COMPARTIMENTA } \\ \text { BAGAGE } \end{gathered}$		1,310	
CASIERS D'AILE		600	
CARBURANT		180	
TOTAL	$M_{T}=$	$\begin{array}{rr} \text { C.G. }= & m m \\ & \% M A C \end{array}$	$M_{T}=$

Exemple d'une vérification de masse et centrage

Données avion à vide:

$$
\begin{aligned}
& \text { masse. } \\
& 387.0 \mathrm{~kg} \\
& \text { bras de levier....................... } 432.4 \mathrm{~mm} \\
& \text { moment............................... } 167,329.0 \mathrm{~kg} \mathrm{~mm} \\
& \text { MAC..................................... 1,500 mm }
\end{aligned}
$$

Masses pour le vol envisagé:
pilote.................................... 85.0 kg
passager.............................. 65.0 kg
bagage dans le cockpit........ 10.0 kg
bagage dans les ailes.......... 10.0 kg
Carburant
43.0 kg (60 L)

Tableau pour la vériffcation de la charge et du centrage

ITEM	$\begin{gathered} \text { MASSE } \\ \mathrm{kg} \end{gathered}$	BRAS DE LEVIER $f m m m$	MOMENT kg mm
AVION A VIDE	387.0	432.4	167,329.0
PILOTE	850	700	59,500.0
PASSAGER	65:0. ${ }^{2}$	700	45,500.0
COMPARTIMENT A BAGAGE	$k^{2} \geq 10.0$	1,310	13,100.0
CASIERS D'AILE	10.0	600	6,000.0
CARBURANT ${ }_{\text {a }}$	5 43.0	180	7,740.0
TOTAL	$M_{T}=600.0$	$\begin{array}{r} \text { C. G. }=498.6 \mathrm{~mm} \\ 33.2 \% \mathrm{MAC} \end{array}$	$M_{T}=299,169.0$

Tableau pour la vêrification de la charge et du centrage- sans carburant

ITEM	$\begin{gathered} \text { MASSE } \\ \mathrm{kg} \end{gathered}$	BRAS DELEVIER mm	MOMENT kg mm
AVION A VIDE	387.0	432.4	167,329.0
PILOTE	85.0	700	$59,500,0 \mathrm{~m}$
PASSAGER ${ }^{\text {' }}$	65.0	700	45,5000
COMPARTIMENT A BAGAGE	10.0	1,310	M13, 1000
CASIERS D'AILE	10.0	600) 0 , 6,000.0
CARBURANT	0.0	180	0.0
total	$M_{T}=557.0$	$\begin{array}{r} C_{.} G_{1}=523.2 \\ 34.9 \% \mathrm{MAC} \end{array}$	$M_{T}=291,429.0$

Tableau vierge pour le calcul masse et centrage
Enregistrement Masse et Centrage
Tableau pour la vérification de la masse et du centrage

ITEM	$\begin{gathered} \text { MASSE } \\ \mathrm{kg} \\ \hline \end{gathered}$	BRAS DE LEVIER mm	$\begin{gathered} \text { MOMENT } \\ \mathrm{kg} \mathrm{~mm} \end{gathered}$
AVION A VIDE			
PILOTE		700	4.4
PASSAGER		700	\% ${ }^{3}$
COMPARTMMENT A BAGAGE		1,310	5
CASIERS D'Alle		600	15
CARBURANT		180 \%	V
total	$M_{T}=$	$\begin{array}{r} \text { C.G. }=\% \text { mm } \\ \text { \% } \% \text { MAC } \end{array}$	$M_{T}=$

NOTE:
La masse à vide comprend lhuile, le liquide detrefroldissement, le liquide hydraulique et le carburant inutilisable.
La valeur max. de carburant dans les résérvoirs $(114 L=82.1 \mathrm{~kg})$ est utilisée pour calculer le centrage le plus avant.
Pas de carburant dans les réservoirs donhera la valeur du centrage le plus en arrière (en cas de perte totale du carburant).

Masse max. au décollage ${ }^{2} 600 \mathrm{~kg}$
Masse max. des bagages dans le fuselage : 18 kg
Masse max dans chaque casier d'aile: 10 kg
Plage de centrage altorisée à vide : 427.5 to $442.5 \mathrm{~mm} / 28.5$ to 29.5% of MAC
Plage de centrage en opération: 420 to $525 \mathrm{~mm} / 28$ to 35% of MAC
MAC (Corde Moyenne de l'aile) : $1,500 \mathrm{~mm}$
MOMENT (kg mm) = Masse $(\mathrm{kg}) \times$ Bras de levjer (mm)
C.G. de l'avion $=\frac{M_{T}}{W_{T}}(\mathrm{~mm}) \times \frac{100}{\text { MAC }}(\%)$ of MAC

Immatriculation:
No. de série:
Date:
Par:

Carburant conversion Litres-Kilogrammes

1.

6.7

FUEL WEIGHT - QUANTITY CONVERSION CHART

6.8 Déplacement du C.G.en fonction de la quantité de carburant

C.G. CHANGE IN DEPENDENCE OF FUEL QUANTITY

6.9 Graphique pour le calcul de la masse et du centrage

Ce graphe permet de calculer simplement et rapidement la masse et le centrage avant le vol. L'exemple ci-dessous montre comment utiliser ce graphe. Procéder en suivant la démarche décrite ci-dessous:

1. Reporter la masse et le centrage à vide (C.G. \% of MAC) dans le tableau:
2. Reporter les autres masses dans le tableau.
3. Calculer la masse totale et la reporter dans le tableau.
4. Calculer et reporter la masse sans carburant (pour connaitrele centrage le plus arrière - en cas de perte totale du carburant),
5. Le point de départ du tracé se situe à linterséction de la masse à vide et de C.G. à vide, indiqué 1 sur le graphe exemple.
6. Descendre verticalement jusqu'à la ligne de la masse du pilote, ensuite continuer horizontalement vers le droite pour ajouter la masse du pilote, point 2.
7. Répéter l'opération pour toutes les autre masses, points $3,4,5$, seule la masse du carburant est retranchée en se déplaçant vers la gauche sur la graphe, point 6 .
8. Descendre verticalement jusqu'au graphe plus grand du C.G. de l'avion, jusqu'à croiser la ligne de la masse totale en charge, point 7 - qui marque la position réelle duy C.G. en \% de la MAC (corde moyenne de l'aile) - au décollage
9. Enfin descendre verticalement à partir du point 5 jusqu'au graphe plus grand dú C. G. de l'avion, jusqu'à croiser la ligne de la masse sans carburant: II s'agit du point 8, position la plus arrière du C.G. in \% of MAC - sâns scarburant.

Graphe vierge pour le calcul des masses et centrages

6.10 Liste des équipements installés

NOTE
La liste des équipements effectivement installés sur cet avion figure en Section 9, Supplément No. 02.

Page laissée intentionnellement blanche.

SECTION 7

7. DESCRIPTION DE L'AVION ET DES SYSTEMES

7.1 Généralités
$7-2 \simeq$
7.2 Structure

7-2
7.3 Commandes de vol
7.4 Tableau de bord

7-2
7.4 Tableau de bord

7-3
7.5 Moteur

7-3
7.6 Hélice

7-4
7.7 Train d'atterrissage

7-5
7.8 Compartiment à bagage

7-5
7.9 Sièges et harnais de sécurité $\quad 7-5$
7.10 Verrière 7-6
7.11 Circuit carburant 7 7-6
7.12 Circuit électrique 7-7
7.13 Instruments devol et Avionique $\quad 7-7$
7.14 Circuit Pitot-statique $\quad 7-7$

7. DESCRIPTION DE L'AVION ET DES SYSTEMES

4.1 Généralités

Cette section comprend une description de l'avion et de ses systèmes.
Le PS-28 Cruiser est un monomoteur métallique à aile basse. Sa structure est semi-monocoque. Il s'agit d'un biplace côte à côte. L'avion est équipè d'yn train tricycle fixe, avec une roue avant libre, tirée. Le tableau de bord est équipé d'écrans, Dynon EFIS-D100 (Electronic Flight Information. System) et Dynon EMS-D120 (Engine Monitoring System).

4.2 Structure

La construction est entièrement métallique, recouverte de simples peaux métalliques, rivetées sur des raidisseurs. La constrùction est faite de feuilles d'aluminium rivetées à des angles en aluminiym avec des rivets Avex. Cette construction de haute résistance en alliage d'aluminium permet une longue durée de vie et une maintenance peu onéreuse, à cause de ses caractéristiques de durabilité et de résistance à la corrosion.
Le profil d'aile a un fort coefficient de portance. L'aile est équipé de volets.

4.3 Commandes de vol

L'appareil est équipe de doubles commandes, de palonniers réglables avec freins hydraulques surr les pédales pour un contrôle facile au sol de la roue libre avant.
Le déplacement longitudinal et latéral du manche est transmis aux gouvernes mécaniquement par un système de bielles et de renvois.
Le palonnier commande la dérive, quil est reliée aux palonniers par des câbles.
Les leviers de réglage des palonniers sont situés à gauche et à droite, légèrement en dessous et en arrière des coins du tableau de bord.
Les volets électriques sont actionnés grâce à un interrupteur situé au milieu du tableau de bord. L'indicateur de la position des volets est à côté de i'interrupteur de commande.

Les compensateurs d'aileron et de profondeur sont commandés électriquement par l'intermédiaire de boutons placés sur le manche. La position des trims est indiquée sur l'écran principal de l'EMS. Seule la position du trim de profondeur est indiquée sur P'écran principal de l'EFIS. La position du trim d'aileron peut être contrôlée visuellement depuis le cockpit, en observant l'aileron droit.

NOTE

Les écrans principaux de l'EFIS et de l'EMS sont décrits en Section 9, Supplément No. 2.

4.4 Tableau de bord

NOTE

La disposition réelle du tableau de bord, la description de linstrumentation et la disposition des commandes dans le cockpit sont décrits er Section 9, Supplément

No. 2.

4.5 Moteur

L'avion est équipé du moteur ROTAX 912 s2 d'une puissance maximale de 73.5 kW . Le Rotax 912 S 2 est un moleur 4 temps, 4 cylindres à plat opposés, allumage par bougies, avec unfarbre cames central et soupapes OHV. Les têtes de cylindre sont refroidies paraliquide et les corps de cylindres par air. C'est un moteur à cartersec, allümage par décharge de condensateurs sans contact. Le moteur est équipé d'un démarreur électrique, d'un alternateur et d'une pompe à carburant mécanique. La puissance est transmise à l'hélice par lintermédiairé dun réducteur avec absorbeur de chocs. Pour les informations à propos des performances du moteur et des limitations voir :

Section 2, chapitre 2.12 "Limites d'utilisation du moteur ROTAX" de ce manuer $=4$

Le manuel d'utilisation Rotax pour le moteur type 912

Commandes moteur

Manette des gaz et starter (choke)

La puissance du moteur est contrôlée au moyen de la manette des gaz et de la commande du «choke»; qui sont placées sur la console centrale entre les sièges. Les deux commandes sont reliés par câble au deux carburateurs. Des ressorts sont ajoutés sur les leviers des gaz, pour que le moteur se retrouve plein gaz en cas de rupture des câbles.

Réchauffage carburateur

L'air réchauffé sur un échangeur de chaleur est dirigé vers les carburateurs via l'airbox. La commande est située au milieu du tableau de bord.

Contact Magnétos

Le contact des magnétos (lgnition switch) doit être sur la position BOTH pour faire tourner le moteur. Par sécurité, il faut enlever la clef, lorsque le moteûr ne tourne pas.

NOTE

Le système d'allumage est indépendant du circuit électrique et iffonctionne même si le Master switch etrou le breaker est sur OFF:

Instruments moteur

L'écran EMS affiche tous les instruments moteur:

- régime
- pression d'admission
- pression et température d'huile
- température des gaz d'echappement
- température des têtes de cylindre
- pression d'essence

Pour les informations concernant les plages et les marquages des instruments moteur yoir:

Section 2, chapitre 2.13 "Marquage des instruments

4.6 Hélice

Helice WOODCOMP KLASSIC 170/3/R 3 pales en composite, à pas réglable autsol. Le diamètre de l'hélice est de 1712 mm .

NOTE
Pour les données techniques se reporter à la documentation fournie par le constructeur de l'hélice

4.7 Train d'atterrissage

L'avion est équipé d'un train tricycle.
Le train principal est constitué de 2 jambes de train en fibre de verre. Chaque roue du train principal dispose d'un frein à disque hydraulique indépendant. La roue avant est une roue libre. La dirigeabilité s'effectue en actionnant de façon différentielle les freins des roues principales.

4.8 Compartiment à bagages

Le compartiment arrière est situé derrière les sièges. Il peutcontenir jusqu'à 18 kg .
Les bagages peuvent aussi être placés dans les compartiment de chacune des ailes, jusqu'à 10 kg , dans chaque casier.
Assurez-vous de ne pas dépasser les masses autorisées et que la position du C.G. reste dans les limites.

NOTE

Les compartiments à bagage dans les ailes ne sont pas étanches.

ATTENTION

Tous les bagages dôvent être correctement attachés.

4.9 Sièges et harnais de sécurité

Les sièges sont côtè à côte. Les coussins des sièges peuvent être enlevés pour faciliterleur nettoyage et séchage. Chaque siège est équipé d'une ceinture de securité à 4 points d'attache. En option, il existe des coussins süpplémentaires pour rehausser et/ou avancer la position du pilote.

NOTE

Avant chaque vol, s'assurer que les ceintures sont bien fixées à la structure et gưelles ne sont pas endommagées. Ajuster la boucle de la ceinture en position centrale surle corps.

4.10 Verrière

L'accès à la cabine se fait par les deux côtés. S'assurer que la verrière est verrouillée et que le mécanisme de verrouillage est bien accroché des deux côtés, avant d'utiliser l'avion et vérifier manuellement le verrouillage en exerçant une pression vers le haut en s'aidant de la poignée de verrière. Le non-verrouillage de la verrière est signalé par une lampe rouge clignotante CANOPY OPENED, placée sur la partie supérieure gauche du tablêau de bord.

4.11 Circuit carburant

Chaque réservoir est équipé d'une mise à l'air libre, d'un filtre et d'une jauge à flotteur. Une purge est située au point le plus bas de chaque réservoir et au bas de la cloison pare-feu sur le filtre a carburant La pompe électrique est située sur la cloison pare-feu et elle est utilisee pour alimenter les carburateurs avant la mise en route. Le carbüranten retour est dirigé vers le réservoir gauche.

ATTENTION
Pendant l'utilisation, le robinet carburant doift être positionné sur les positions de réservoir LEFT ou RIGHT (positions repérées par un trait vert).

NOTE
Le robinet n'est pas fermé en position verticale vers le haut entre les positions LEFT et RIGHT.
Sile réservoir gauche est plein, vous devez démarrer le vol avec le sélecteur sur LEFT. Si vous démarriez le moteur avec le sélecteur sur RIGHT, avec le réservoir gauche plein, alors du carburant pourrait s'échapper du réservoir gauche à cause de la ligne de retour de carburant dans ce réservoir.

4.12 Circuit électrique

Générateur

L'alternateur (250 WAC) est intégré au moteur et il est relié à la barre bus via le régulateur extérieur (12 V 20 ADC).

Batterie

La batterie 12 V est fixée sur l'avant de la parol coupe-feut

Contact général (Master battery switch)

L'interrupteur MASTER BAT connecte la batterie 12 V au circuit électrique.

Interrupteur alternateur (Master generator switch)

L'interrupteur MASTER GEN connectel lalternateur au circuit électrique.
Breakers et interrupteurs

La description des breakers et des interrupteurs est en
Section 9 , Supplément No. 02.

4.13 Instruments et Avionique

| NOTE |
| :---: | :---: |
| La description des instruments et de l'avionique est en
 Section 9, Supplément No. 02. |

4.14 Circuit Pitot-Statique

La sonde standard AVIATIK WA037383 pitot-static est située sous l'aile gauche. La distribution des pressions se fait via des tuyaux plastiques souples. Maintenir propre la sonde pour un bon fonctionnement.

Page laissée intentionnellement blanche

SECTION 8

8. MANIPULATION ET ENTRETIEN

8.1 Introduction
8.2 Manipulation au sol
8.3 Instructions pour le tractage
8.4 Instructions pour l'arrimage
8.5 Fluides utilisables

$$
8-2
$$

8-2

8-3
8.6 Nettoyage et Entretien
8.7 Montage et démontage 8-6
8.8 Périodicité des visites d'inspection $\quad 8$-6

8. MANIPULATION et ENTRETIEN

8.1 Introduction

Cette section contient les procédures recommandées par le fabricant pour les manipulations et l'entretien corrects de l'avion.ne. Elle contient aussi les inspections et les entretiens, qui doivent être effectués, pour maintenir les performances d'un avion neuf.

8.2 Manipulation au sol

8.2.1 Parking

Il est préférable de garer l'avion dans un hangar out dans un autre espace intérieur (garage), avec une température stable, une bonne ventilation, pas trop humide et sans poussière.
Il faut arrimer l'avion lorsqu'il est garé au dehors. De même, s'il est garé pour une longue durée, il faut recouvrir la verrière et si possible l'ensemble de l'avion, avec des housses adaptées

8.2.2 Mise sur tréteaux

Comme le poids de l'avionest relativement faible, deux personnes peuvent le soulever aisément. Toüt d'abord il faut se procurer deux tréteaux suffisamment solides pour supporter le poids de l'avion.
Il est possible de soulever l'avion en le tenant aux endroits ci-dessous:
En abaissaint l'arrière du fuselage à l'endroit d'un couple, l'avant se soulève ett| est possible de placer un tréteau sous la cloison pare-feu.
$\hat{E n}$ levant la partie arrière du fuselage sous une cloison, il est possible de le placer sur un tréteau à ce niveau.

Pour soulever une aile, il faut la soulever par dessous uniquement au niveau du longeron principal. Ne pas soulever une aile par le saumon.

8.2.3 Transport routier

L'avion peut être transporté sur une remorque de voiture adaptée. II faut d'abord démonter les ailes, avant le transport routier. Le fuselage et les ailes doivent être correctement attachés pour empêcher de possibles détériorations.

8.3 Instructions pour le tractage

Pour déplacer l'avion au sol, il faut utiliser la barre ou s'il faut le pousser à la main, pousser par l'arrière du fuselage en plaçant les mains sur un endroit ou la peau repose sur une cloison.

ATTENTION

Ne pas pousser, ni tirer par l'hélice ou les gouvernes pour déplacer l'avion. Vous pourriez endommager l'hélice ou les gouvernes.
Eviter des efforts excessifs sur la structure de lavion. Prendre toutès tes. précautions en particulier dans la zone de l'hélice. Utiliser toujours la barre quand on pousse lavion.

8.4 Instructions pour l'arrimage

L'avion devrait être systématiquement amarré â la fin des vols s'il doit rester à l'extérieur. L'amarrage est nécessaire pour eviter des dommages possibles dus au vent et aux rafales. Pour cela, l'avion est équipé de point d'ancrage sur lintrados.
Procédures pour l'arrimage:

1. Robinet carburant
2. MASTER BAT \& GEN
3. Tous les interrupteurs
4. Magnétos OPF
5. Manche

- attaché avec les harnais

6. Ventilation

- fermée

7. Verrière

- fermée, verrouillée

8. Arrimer lavion avec des cordes attachées aux points d'arrimage sous les ailes et sous l'arrière du fuselage.

En cas de stationnement prolongé, spécialement pendant l'hiver, il est recommandé de recouvir la verrière et si possible l'ensemble de l'avion, avec une bâche adaptée, fixée à l'avion

8.5 Fluides utilisables

Voir les chapitre correspondants du manuel ROTAX et du manuel de maintenance du PS-28 Cruiser pour plus d'informations.

8.5.1 Spécifications pour l'essence autorisée

Types d'essence recommandés :
(se référer' au manuel ROTAX section 2.4 Essence et al l'instruction de service Rotax, Service Instruction S1-912-016)
MOGAS (Essence Auto)

Standard Européen
Standard US
Standard Canadien

- min. RON 95, EN 228 Super, EN 228 super plus - ASTM D4814
- min. AKI 91, CAN/CGSB-3.5Quality 3

ATTENTION
Les essences contenant plus de 5% d'éthanol ntont pasété testées et ne sont pas autorisées. $\forall{ }^{m}$
AVGAS
Standard US -AVGAS 100 LE ASTM D910)
L'AVGAS 100 LL produit de plus grands efforts sur les sièges de soupapes à cause de la plus forte teneur en plomb et augmente les dépôts dans la chambre de combustion ainsi les déchets de plomb dans le circuit d'huile. Aussi, l'AVGAS ne doit être Litilisée qu'en cas de problèmes de Vapor lock ou bien lorsque d'autrestypes de carburant ne sont pas disponibles.

Quantité de carburant:

Contenance des réservoirs d'aile $2 \times 57 \mathrm{~L}$
Quantité non utilisable. $2 \times 0.5 \mathrm{~L}$

8.5.2 Spécifications pour l'huile autorisée

Types d'huile recommandés :
(se référer au manuel "Rotax Operator's 2.5 Lubricants" et à finstruction de service
"Rotax Service Instruction Si-912-016")
Huiles pour moteur moto 4 temps, de marque déposée, avec les additifs pour boîte de vitesse.
Utiliser uniquement des huiles de classification API "SG" ou supérieure!
Utiliser de l'huile multigrade. Utillsation d'huile minérale n'est pas recommandée.
Type d'huile utilisée par le fabricant de l'avion :

- voir Section 9, Supplément No. 02

Quantité d'huile:

Minimum3.3 L
Maximum

8.5.3 Spécifications pour le liquide de refroidissement autorisé:

(se référer au manuel "Rotax Operator's manual section 2.2 Operating speeds and limits and section 2.3 Coolant" et au manuel "Rotax Installation manual section 12 Cooling system" et à linstruction de service "Rotax Service instruction Sl-912-016")

En principe deux types de liquide de refroidissement sont autorises.
Le liquide conventionnel, eau + éthylène, glycol
Mélange sans eau, propylène glycol.

AVERTISSEMENT

Le liquide concentré (propylène glycol) ne doit pas êtré mélangé avec le fiquide conventionnel (glycol/water) ou aveedes additifs !
Ne pas observer cette consigne peut entrainer des dommages au circuit de refroidissement etau moteur.

Type de liquide de refroildissement employé par le constructeur de l'avion:

- voir Section 9, SupplementiNo. 02

Quantité du liquide de refroidissement:
Approximativement:
$2.5 L$

8.6 Nettoyage et entretien

Utiliser un produit de nettoyage efficace pour laver l'avion. Les tâches d'huile sur la surface de l'avion (exceptée la verrière!) peuvent être nettoyées avec de l'essence
La verrière doit être nettoyée uniquement à l'eau tède ou avec des produits spéciaux pour le plexi. Utiliser un textile doux et propre ou une peau de chamois. Puis "polisher" avec un produit adapté.

ATTENTION

Ne jamais nettoyer la verrière quand elle est sèche ne pas utiliser djessence ou de solvants.

Les coussins peuvent être retirés de la cabine, brossès et éventuellement lavés à l'eau tiède avec une quantité de lessive adéguate. Sécher entièrement les coussins avant de les remettre dans la cabine.

ATTENTION

En cas de stationnement prolongé à "extélieur recouvrir la verrière avec une bâche, pour protéger lintérebrides rayons du soleil.

8.7 Montage et démontage

Se reporter au manuel de maintenance "PS-28 Cruiser aircraft Maintenance" et manuel de photos pour l'assemblage.

8.8 Périodicité des visites d'inspection

La périodicité des visites générales et la maintenance en condition dépendent des côndititions d'utilisation et de l'état général de l'avion.
Inspections et révisions doivent être effectuées selon la périodicité indiquée dans les documents suivants:

Manuel "PS-28 Cruiser aircraft Maintenance" pour la maintenance
de l'avion.
Manuel "Rotax engine Maintenance" pour la maintenance du moteur.

Manuel "Woodcomp Klassic propeller" pour la maintenance de

8.9 Modifications et réparations de l'avion

II est recommandé de contacter le constructeur de l'avion, avant toute modification pour s'assurer que la navigabilité de l'avion n'est pas affectée. Il faut toujours utillser les pièces de rechange originales produites par le fabricant de lavion du moteur et de lhélice.

Si la masse de l'avion est changée suite à une modification, une nouvelle pesée doit être effectuée. La nouvelle masse à vide et le nouveau moment doivent être reportés sur la fiche de pesée.

NOTE

Les réparations de lavion doivent être exécutées en accord avecylAC 43.13-1B.

Page laissée intehtionnellement blanche

SECTION 9

9. SUPPLEMENTS

9.1 Liste des suppléments insérés
9.2 Suppléments insérés $9-2=\frac{4}{4}$

9. SUPPLEMENTS

Cette section contient le suppléments nécessaires pour une utilisation sûre et efficace de l'avion, lorsqu'il est équipé de différents équipements et systèmes en option qui ne sont pas disponibles sur lavion en version standard.

9.1 Liste des suppléments insérés

9.2 Suppléments insérés

Supplément No. 02

SPECIFICATION pour AVION équipé Dynon D100 EFIS

Dans ce Supplément No. 02 - se trouvent la fiche de pesée et la liste des équipements pour l'avion:

Immatriculation:

Numéro de série de l'avion:

Ce supplément doite être,joint au Manuel de vol et à bord de l'avion en utilisation
Les informations contenues dans ce supplément complètent ou remplacent les informations du manuel de vol de base. Les limitations, procédures et informations non contenués dañs ce supplément et qui font partie du manuel de base restent valides.

> Ge supplément apporte les informations nécessaires pour une utilisation avec les équipements installés sur l'avion.

Ce supplément a été approuvé par l'EASA sous le "Restricted Type Certificate EASA.A.546" le 16. 04. 2012.

ENREGISTREMENT des REVISIONS

6. PESEE

6.5 Détermination du C.G. et plage

6.5.2 Détermination de la position du C.G.

FICHE DE PESEE
Tableau pour détermination de la masse à vide et de la position du C.G.

888888	ITEM	$\begin{gathered} \text { MASSSE } \\ \mathrm{kg} \\ \hline \end{gathered}$	BRAS de LEVIER mm	$\left.\begin{array}{c}\text { MOMENT } \\ k g \mathrm{~mm} \\ \times\end{array}\right)$
	Roue princ.droite	$W_{R}=$	$L_{\text {F }}=$	$\sqrt{5}$
	Roue princ.gauche	$W_{L}=$	$L_{L}=\quad{ }^{4}+5$	
	Roue avant	$W_{N}=$		-
	TOTAL	Masse à vide: $W_{E}=$	C. $\mathrm{G} . \mathrm{B} \mathrm{mm}$ \% MAC	Moment total avion: $M_{E}=$

NOTE: La masse a vide comprend l'huile, le liguide de refroidissement, le liquide hydraulique et le carburant inutilisable.
Plage de C.G. à vide : 427.5 à $442.5 \mathrm{~mm} / 28.5$ à 29.5% de MAC
Plage de C.G. en opération. 420 a $525 \mathrm{~mm} / 28$ à 35% de MAC
MAC : $1,500 \mathrm{~mm}$

MOMENT $(\mathrm{kg} \mathrm{mm})=$ MASSE $(\mathrm{kg}) \times$ BRAS de LEVIER (mm)

Position du CiG, a vide

$$
=\frac{M_{T E}}{W_{T E}}(\mathrm{~mm}) \times \frac{100}{\cdots A C} \text { (\%) of MAC }
$$

Immatriculation:
N° de série:
Date:
Par:

6.9 Liste des équipements installés

 sur le PS-28 Cruiser aircraft N° de série:Rotax 912 ULS2 avec boilte à air et thermostats
Woodcomp KLASSIC 170/3/R
Dynon D100 EFIS
Dynon D120 EMS
UMA anémomètre de secours Backup Airspeed indicator
UMA Altimètre de secours
CM-24 Compas magnétique
Radio Garmin SL30
Intercom PS Engineering PM3000
Transpondeur Garmin GTX328
Balise de détresse King AK451 ELT
AirGizmos, Garmin 695 GPS
Module Dynon HS34 HSI
Antennes
Trim G-205 et alternat sur les manches
Trims et volets commandés électriquement
Lampes strobe/nav. AVE-WPST sûrtes saumons daile
Phare d'atterrissage sur le capot moteur
Éclairage des instruments
Éclairage du Cockpit
Palonniers réglables
Freins hydrauliques sur les deux palonniers.
Frein de parking
Train tricycle avec roues carénées
Chauffage cabine?
Réchauffage carburateur
Coussins en cuir
Peinture mètallique
Rideau pare-soleil
Accoudoirs

7. DESCRIPTION DE L'AVION ET DES SYSTEMES

7.4. Tableau de bord

Tableau de bord du PS-28 Cruiser n° de série :

Description de l'instrumentation et des commandes dans le cockpit

1	Frein de parking	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	Arrivée air frais
2	Transpondeur	$\begin{aligned} & 1 \\ & 9 \\ & \hline \end{aligned}$	Alternat / trim de profondeur / trim.
3	Commande d'éclairage du	$\begin{aligned} & 2 \\ & 0 \\ & \hline \end{aligned}$	Interrupteurs*
4	Commande d'éclairage des	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	Contact magnétos
5	EFIS	$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	Intentionnellement blanc
6	Lampe verrière ouverte	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Interrupteur des volets
7	Lampe d'alarme EMS	$\begin{aligned} & 2 \\ & 4 \\ & \hline \end{aligned}$	$\sqrt{3}$ Indicateur de
8	Module HSI	$\begin{array}{r} 2 \\ 5 \\ \hline \end{array}$	\# Manette des gaz
9	Anémomètre de secours	$\begin{gathered} 2 \\ 6 \end{gathered}$	Choke
$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Altimètre de secours	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	Sélecteur des réservoirs
$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	GPS	$\begin{aligned} & 2 \\ & 8 \\ & \hline \end{aligned}$	Lighting cover
$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	Compas	$\begin{aligned} & 2 \\ & 9 \\ & \hline \end{aligned}$	Réchauffage carburateur
$\begin{aligned} & 1 \\ & 3 \end{aligned}$	Radio	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	Chauffage cabine
$\begin{aligned} & 1 \\ & 4 \end{aligned}$	EMS	$\begin{aligned} & 3 \\ & 1 \\ & \hline \end{aligned}$	Réglage du volume des alarmes
$\begin{aligned} & 1 \\ & 5 \end{aligned}$	Eclairage cockpit	$\begin{aligned} & 3 \\ & 2 \\ & \hline \end{aligned}$	Intercom
$\begin{gathered} 1 \\ 6 \end{gathered}$	Panneau de contröle de I'ELT	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	Levier de réglage des palonniers
$\begin{aligned} & 1 \\ & 7 \end{aligned}$	Breakers*	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	Intentionnellement blanc

* La description détaillée des interrupteurs et des breakers se trouve dans ce supplément, page 6.

7．12 Circuit électrique

Breakers et interrupteurs

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	MASTER BAT	Batterie －radio －intercom	Interrupteur	－
\bigcirc	MASTER GEN	alternateur	Interrupteur	
8	EMS	Ecran instruments moteur	Interrupteur	
$\begin{aligned} & \frac{山}{\mathbf{m}} \\ & \stackrel{4}{⿷} \end{aligned}$	AVIONICS	－transpondeur - GPS	Interrupteur	－
吕	FUEL P	Pompe carburant	Interrupteut ${ }^{\text {a }}$	－
피̇	NAV L	Feux de navigation	Interrupteur	－
3	STROBE	Strobes	Interrupteur	
0	LDG L	Phare d＇atterrissage	Interrupteur	
5	COCKPIT L	Éclairage cockpit		
$\underline{5}$	INSTR L	Éclairage instruments		
00000	COMM	Radio	ut／rheostat	－${ }^{-}$
	1 C	Radio	circuit breaker	5A
		Intercom	circuit breaker	1 A
	EMS	EMS	circuit breaker	2A
	NAV	Equipement de NAV	circuit breaker	2A
	EFIS	EFIS \％ivay	circuit breaker	
	HS34	Module．HSt	circuit breaker	1A
	GPS	GPS	circuit breaker	4A
$\begin{aligned} & \mathbb{Z} \\ & 2 \end{aligned}$	XPDR	Transpondeur	circuit breaker	5A
0 0 14 0 0 0	FUELP A We	Pompe carburant	circuit breaker	3A
	FLAPS	Volets	circuit breaker	3 A
	$\text { TRIM }{ }^{2} \text { equ }$	－Trim d＇aileron －Trim de profondeur	circuit breaker	1 A
	STROBE	Strobes	circuit breaker	
	NAVL	Feux de navigation	circuit breaker	5 A
	LDG L	Phare d＇atterrissage	circuit breaker	4A
	INT L	－Éclairage des instruments －Éclairage cockpit	circuit breaker	2A

7.13 Instruments et Avionique

L'avion est équipé des instruments suivants:

EFIS - Dynon D100

Anémomètre de secours - Winter
Altimètre de secours - UMA
Compas magnétique CM24
EMS - Dynon D120

L'avion est équipé de l'avionique suivante:
Radio - Garmin SL30
Intercom - PS Engineering PM3000
Transpondeur - Garmin GTX328
GPS - Garmin 695
ELT - King AK451
Module HSI - Dynon HS34

NOTE
Pour l'utilisation des instruments et de lavionique se reporter aux manuels des differents fabricants de ces équipements.
7.13.1 Écrans EFIS \& EMS

Écran principal de l'EFIS

Ecran pincipal de rems

8. MANIPULATION ET ENTRETIEN

8.5 Fluides employés

8.5.2 Spécifications et grades pour l'huile

Type d'huile utilisé par le constructeur :
AeroShell Oil Sport Plus 4
SAE: 10W-40, API: SL
8.5.3 Spécifications et grades pour le liquide de refroidissement

Type de liquide de refroidissement utilisế par le constructeur:
Spécification: ASTM D 3306, VW JL 774 C
Pourcentages du mélangefiquide de refroidissement / eau : $50 / 50 \%$
Température Max. duliquide de refroidissement: $120^{\circ} \mathrm{C}$

